Single atom Si nanoelectronics using controlled single-ion implantation

被引:9
作者
Mitic, M [1 ]
Andresen, SE
Yang, C
Hopf, T
Chan, V
Gauja, E
Hudson, FE
Buehler, TM
Brenner, R
Ferguson, AJ
Pakes, CI
Hearne, SM
Tamanyan, G
Reilly, DJ
Hamilton, AR
Jamieson, DN
Dzurak, AS
Clark, RG
机构
[1] Univ New S Wales, Sch Elect Engn & Telecommun, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[2] Univ Melbourne, Sch Phys, Microanalyt Res Ctr, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia
[3] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
关键词
nanoelectronics; quantum computing; single-atom devices; nanolithography; electron beam lithography; single electron transistors; single-ion implantation; integrated particle detectors;
D O I
10.1016/j.mee.2004.12.096
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present recent developments in controlled single-ion implantation techniques. A low energy (14 keV) ion-beam is used to produce shallow phosphorus implants in high-purity Si. Single atom control during implantation is achieved by monitoring on-chip p-i-n detectors, integrated within the device structure, while positional accuracy of 20 nm is achieved via a nanolithographic, resist mask. This technique has been used to implant only two phosphorus dopant atoms for use as charge-based Si:P quantum bits (qubits). Voltages applied to precisely aligned surface electrodes control the double-donor system, and dual single-electron transistors (SETs) provide readout with spurious signal rejection. Preliminary low temperature measurements on devices implanted with less than 10 dopant atoms demonstrate isolated charge transfer events. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 2003, INT TECHNOLOGY ROADM
[2]  
Borisenko V., 1997, MICRODEVICE PHYS FAB
[3]   Correlated charge detection for readout of a solid-state quantum computer [J].
Buehler, TM ;
Reilly, DJ ;
Brenner, R ;
Hamilton, AR ;
Dzurak, AS ;
Clark, RG .
APPLIED PHYSICS LETTERS, 2003, 82 (04) :577-579
[4]   POINT-DEFECTS AND DOPANT DIFFUSION IN SILICON [J].
FAHEY, PM ;
GRIFFIN, PB ;
PLUMMER, JD .
REVIEWS OF MODERN PHYSICS, 1989, 61 (02) :289-384
[5]   OBSERVATION OF SINGLE-ELECTRON CHARGING EFFECTS IN SMALL TUNNEL-JUNCTIONS [J].
FULTON, TA ;
DOLAN, GJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (01) :109-112
[6]   Charge-based quantum computing using single donors in semiconductors [J].
Hollenberg, LCL ;
Dzurak, AS ;
Wellard, C ;
Hamilton, AR ;
Reilly, DJ ;
Milburn, GJ ;
Clark, RG .
PHYSICAL REVIEW B, 2004, 69 (11)
[7]   A silicon-based nuclear spin quantum computer [J].
Kane, BE .
NATURE, 1998, 393 (6681) :133-137
[8]   Nanofabrication processes for single-ion implantation of silicon quantum computer devices [J].
McKinnon, RP ;
Stanley, FE ;
Lumpkin, NE ;
Gauja, E ;
Macks, LD ;
Mitic, M ;
Chan, V ;
Peceros, K ;
Buehler, TM ;
Dzurak, AS ;
Clark, RG ;
Yang, C ;
Jamieson, DN ;
Prawer, SD .
SMART MATERIALS & STRUCTURES, 2002, 11 (05) :735-740
[9]   Towards the fabrication of phosphorus qubits for a silicon quantum computer [J].
O'Brien, JL ;
Schofield, SR ;
Simmons, MY ;
Clark, RG ;
Dzurak, AS ;
Curson, NJ ;
Kane, BE ;
McAlpine, NS ;
Hawley, ME ;
Brown, GW .
PHYSICAL REVIEW B, 2001, 64 (16) :1614011-1614014
[10]   Technology computer-aided design modelling of single-atom doping for fabrication of buried nanostructures [J].
Pakes, CI ;
George, DP ;
Jamieson, DN ;
Yang, CJ ;
Dzurak, AS ;
Gauja, E ;
Clark, RG .
NANOTECHNOLOGY, 2003, 14 (02) :157-160