Estimating model parameters from time series by autosynchronization

被引:277
作者
Parlitz, U
机构
[1] Drittes Physikalisches Institut, Universität Göttingen, Göttingen, 020D-370730
关键词
D O I
10.1103/PhysRevLett.76.1232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parameters of a given model describing a (chaotic) dynamical system are estimated from scalar time series using autosynchronization where the parameter adaption process is controlled by the synchronization of the model to the given dynamics. A practical method is presented for deriving the necessary ordinary differential equations for the parameter controlling loop.
引用
收藏
页码:1232 / 1235
页数:4
相关论文
共 19 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]  
AGUIRRE LA, 1995, PHYSICA D, V65, P239
[3]   FITTING ORDINARY DIFFERENTIAL-EQUATIONS TO CHAOTIC DATA [J].
BAAKE, E ;
BAAKE, M ;
BOCK, HG ;
BRIGGS, KM .
PHYSICAL REVIEW A, 1992, 45 (08) :5524-5529
[4]   MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM TIME-SERIES DATA [J].
BROWN, R ;
RULKOV, NF ;
TRACY, ER .
PHYSICAL REVIEW E, 1994, 49 (05) :3784-3800
[5]  
CREMERS J, 1987, Z NATURFORSCH A, V42, P797
[6]  
Crutchfield J. P., 1987, Complex Systems, V1, P417
[7]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[8]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[9]   RECONSTRUCTION OF VECTOR-FIELDS - THE CASE OF THE LORENZ SYSTEM [J].
GOUESBET, G .
PHYSICAL REVIEW A, 1992, 46 (04) :1784-1796
[10]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547