Robust Bayesian general linear models

被引:20
作者
Penny, W. D. [1 ]
Kilner, J. [1 ]
Blankenburg, F. [1 ]
机构
[1] UCL, Wellcome Dept Imaging Neurosci, London WC1N 3BG, England
基金
英国惠康基金;
关键词
Bayesian; fMRI; artefact; mixture model; robust estimation;
D O I
10.1016/j.neuroimage.2007.01.058
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We describe a Bayesian learning algorithm for Robust General Linear Models (RGLMs). The noise is modeled as a Mixture of Gaussians rather than the usual single Gaussian. This allows different data points to be associated with different noise levels and effectively provides a robust estimation of regression coefficients. A variational inference framework is used to prevent overtitting and provides a model order selection criterion for noise model order. This allows the RGLM to default to the usual GLM when robustness is not required. The method is compared to other robust regression methods and applied to synthetic data and fMRI. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:661 / 671
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2003, HUMAN BRAIN FUNCTION
[2]  
ATTIAS H, 1995, VARIATIONAL BAYESIAN, V12
[3]  
Bishop CM., 1995, Neural networks for pattern recognition
[4]  
BOX GEP, 1977, BAYESIAN INFERENCE S
[5]   Detecting and adjusting for artifacts in fMRI time series data [J].
Diedrichsen, J ;
Shadmehr, R .
NEUROIMAGE, 2005, 27 (03) :624-634
[6]  
GREVE DN, 2006, P 12 ANN M ORG HUM B, V31, pS1
[7]  
JUNG T, 1999, REMOVING ELECTROENCE
[8]  
Kleinbaum DG., 1988, STUDENTS PARTIAL SOL, Vvol 601
[9]   Diagnosis and exploration of massively univariate neuroimaging models [J].
Luo, WL ;
Nichols, TE .
NEUROIMAGE, 2003, 19 (03) :1014-1032
[10]   Variational Bayesian inference for fMRI time series [J].
Penny, W ;
Kiebel, S ;
Friston, KJ .
NEUROIMAGE, 2003, 19 (03) :727-741