Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis

被引:419
作者
Patton, EE
Willems, AR
Tyers, M
机构
[1] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Programme Mol Biol & Canc, Toronto, ON M5G 1X5, Canada
[2] Univ Toronto, Grad Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
基金
加拿大自然科学与工程研究理事会; 英国医学研究理事会;
关键词
D O I
10.1016/S0168-9525(98)01473-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The ubiquitin-dependent proteolytic pathway targets many key regulatory proteins for rapid intracellular degradation Specificity in protein ubiquitination derives from E3 ubiquitin protein ligases, which recognize substrate proteins. Recently, analysis of the E3s that regulate cell division has revealed common themes in structure and function. One particularly versatile class of E3s, referred to ns Skp1p-Cdc53p-F-box protein (SCF) complexes, utilizes substrate-specific adaptor subunits called F-box proteins to recruit various substrates to a core ubiquitination complex. A vast array of F-box proteins have been revealed by genome sequencing projects, aad the early returns from genetic analysis in several organisms promise that F-box proteins will participate ill the regulation of many processes, including cell division transcription, signal transduction and development.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 75 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   The inducible elongin A elongation activation domain: Structure, function and interaction with the elongin BC complex [J].
Aso, T ;
Haque, D ;
Barstead, RJ ;
Conaway, RC ;
Conaway, JW .
EMBO JOURNAL, 1996, 15 (20) :5557-5566
[4]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[5]   G(1) CYCLIN TURNOVER AND NUTRIENT-UPTAKE ARE CONTROLLED BY A COMMON PATHWAY IN YEAST [J].
BARRAL, Y ;
JENTSCH, S ;
MANN, C .
GENES & DEVELOPMENT, 1995, 9 (04) :399-409
[6]   Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor [J].
Benito, J ;
Martín-Castellanos, C ;
Moreno, S .
EMBO JOURNAL, 1998, 17 (02) :482-497
[7]   DROSOPHILA KELCH MOTIF IS DERIVED FROM A COMMON ENZYME FOLD [J].
BORK, P ;
DOOLITTLE, RF .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 236 (05) :1277-1282
[8]   Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast [J].
Brown, JL ;
Jaquenoud, M ;
Gulli, MP ;
Chant, J ;
Peter, M .
GENES & DEVELOPMENT, 1997, 11 (22) :2972-2982
[9]   Genetics of obesity: Advances from rodent studies [J].
Chagnon, YC ;
Bouchard, C .
TRENDS IN GENETICS, 1996, 12 (11) :441-444
[10]   The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae [J].
Chen, GC ;
Kim, YJ ;
Chan, CSM .
GENES & DEVELOPMENT, 1997, 11 (22) :2958-2971