Universal residuals: A multivariate transformation

被引:39
作者
Brockwell, A. E.
机构
[1] Department of Statistics, Carnegie Mellon University, Pittsburgh
关键词
residuals; hypercube; uniform; generalized linear models; time series; survival analysis; KOLMOGOROV-SMIRNOV; MODELS;
D O I
10.1016/j.spl.2007.02.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rosenblatt's transformation has been used extensively for the evaluation of model goodness-of-fit, but it only applies to models whose joint distribution is continuous. In this paper we generalize the transformation so that it applies to arbitrary probability models. The transformation is simple, but has a wide range of possible applications, providing a tool for exploratory data analysis and formal goodness-of-fit testing for a very general class of probability models. The method is demonstrated with specific examples. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1473 / 1478
页数:6
相关论文
共 14 条
[1]  
Anscombe F J., 1961, P 4 BERK S MATH STAT, P1
[2]   Long-memory dynamic Tobit models [J].
Brockwell, A. E. ;
Chan, N. H. .
JOURNAL OF FORECASTING, 2006, 25 (05) :351-367
[3]   THE KOLMOGOROV-SMIRNOV, CRAMER-VON MISES TESTS [J].
DARLING, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (04) :823-838
[4]   Evaluating density forecasts with applications to financial risk management [J].
Diebold, FX ;
Gunther, TA ;
Tay, AS .
INTERNATIONAL ECONOMIC REVIEW, 1998, 39 (04) :863-883
[5]  
DOBSON AJ, 2001, INTRO GENERALIZED LI
[6]  
DOUCET A, 2001, SEQUENTIAL M CARLO M
[7]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[8]   A multivariate Kolmogorov-Smirnov test of goodness of fit [J].
Justel, A ;
Pena, D ;
Zamar, R .
STATISTICS & PROBABILITY LETTERS, 1997, 35 (03) :251-259
[9]   Stochastic volatility: Likelihood inference and comparison with ARCH models [J].
Kim, S ;
Shephard, N ;
Chib, S .
REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) :361-393
[10]  
KITAGAWA G, 1996, GENERALIZED LINEAR M, V5, P1