Antibody diversification by somatic mutation: from Burnet onwards

被引:71
作者
Neuberger, Michael S. [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
基金
英国医学研究理事会;
关键词
clonal selection theory; somatic mutation; DNA deamination; antibody diversification;
D O I
10.1038/sj.icb.7100160
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The clonal selection theory proposed by Burnet required a genetic process, for which there was then no precedent, which randomizes the region of the gene(s) responsible for the specification of gamma-globulin molecules. Work over the subsequent half-century substantiated Burnet's speculation, revealing two distinct novel genetic processes. During early development ( when Burnet first thought the randomization took place) programmed gene segment rearrangement catalysed by the RAG1/RAG2 recombinase generates a substantial diversity of immunoglobulin molecules (the primary repertoire). Somatic hypermutation (triggered by the activation-induced deaminase (AID) DNA deaminase) then occurs following antigen encounter in man and mouse, yielding a secondary repertoire. This hypermutation allows both limitless diversification as well as maturation of the antibody response by a process of somatic evolution akin to that envisioned by Burnet in later formulations of the clonal selection theory. AID-triggered antigen receptor diversification probably arose earlier in evolution than RAG-mediated repertoire generation. Here I trace our insights into the molecular mechanism antibody somatic mutation from when it was first proposed through to our current understanding of how it is triggered by targeted deamination of deoxycytidine residues in immunoglobulin gene DNA.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 87 条
[1]   JOINING OF IMMUNOGLOBULIN HEAVY-CHAIN GENE SEGMENTS - IMPLICATIONS FROM A CHROMOSOME WITH EVIDENCE OF 3 D-JH FUSIONS [J].
ALT, FW ;
BALTIMORE, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (13) :4118-4122
[2]  
[Anonymous], ANN NEW YORK ACAD SC
[3]   Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion [J].
Arakawa, H ;
Hauschild, J ;
Buerstedde, JM .
SCIENCE, 2002, 295 (5558) :1301-1306
[4]   An immunoglobulin mutator that targets G center dot C base pairs [J].
Bachl, J ;
Wabl, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (02) :851-855
[5]   Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice [J].
Bardwell, PD ;
Woo, CJ ;
Wei, KC ;
Li, ZQ ;
Martin, A ;
Sack, SZ ;
Parris, T ;
Edelmann, W ;
Scharff, MD .
NATURE IMMUNOLOGY, 2004, 5 (02) :224-229
[6]   C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion [J].
Barreto, V ;
Reina-San-Martin, B ;
Ramiro, AR ;
McBride, KM ;
Nussenzweig, MC .
MOLECULAR CELL, 2003, 12 (02) :501-508
[7]   Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes:: Correlation with mutation spectra in vivo [J].
Beale, RCL ;
Petersen-Mahrt, SK ;
Watt, IN ;
Harris, RS ;
Rada, C ;
Neuberger, MS .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 337 (03) :585-596
[8]   ELEMENTS REGULATING SOMATIC HYPERMUTATION OF AN IMMUNOGLOBULIN-KAPPA GENE - CRITICAL ROLE FOR THE INTRON ENHANCER MATRIX ATTACHMENT REGION [J].
BETZ, AG ;
MILSTEIN, C ;
GONZALEZFERNANDEZ, A ;
PANNELL, R ;
LARSON, T ;
NEUBERGER, MS .
CELL, 1994, 77 (02) :239-248
[9]   PASSENGER TRANSGENES REVEAL INTRINSIC SPECIFICITY OF THE ANTIBODY HYPERMUTATION MECHANISM - CLUSTERING, POLARITY, AND SPECIFIC HOT-SPOTS [J].
BETZ, AG ;
RADA, C ;
PANNELL, R ;
MILSTEIN, C ;
NEUBERGER, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (06) :2385-2388
[10]   Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase [J].
Bransteitter, R ;
Pham, P ;
Scharff, MD ;
Goodman, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :4102-4107