Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae

被引:63
作者
Prather, D
Krogan, NJ
Emili, A
Greenblatt, JF
Winston, F [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[2] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada
[3] Univ Toronto, Dept Med Genet & Microbiol, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1128/MCB.25.22.10122-10135.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to identify previously unknown transcription elongation factors, a genetic screen was carried out to identify mutations that cause lethality when combined with mutations in the genes encoding the elongation factors TFIIS and Spt6. This screen identified a mutation in YKL160W, hereafter named ELF1 (elongation factor 1). Further analysis identified synthetic lethality between an elf1 Delta mutation and mutations in genes encoding several known elongation factors, including Spt4, Spt5, Spt6, and members of the Paf1 complex. Genome-wide synthetic lethality studies confirmed that elf1 Delta specifically interacts with mutations in genes affecting transcription elongation. Chromatin immunoprecipitation experiments show that Elf1 is cotranscriptionally recruited over actively transcribed regions and that this association is partially dependent on Spt4 and Spt6. Analysis of elf1 Delta mutants suggests a role for this factor in maintaining proper chromatin structure in regions of active transcription. Finally, purification of Elf1 suggests an association with casein kinase II, previously implicated in roles in transcription. Together, these results suggest an important role for Elf1 in the regulation of transcription elongation.
引用
收藏
页码:10122 / 10135
页数:14
相关论文
共 84 条
[1]   Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS [J].
Adelman, K ;
Marr, MT ;
Werner, J ;
Saunders, A ;
Ni, ZY ;
Andrulis, ED ;
Lis, JT .
MOLECULAR CELL, 2005, 17 (01) :103-112
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Running with RNA polymerase: eukaryotic transcript elongation [J].
Arndt, KM ;
Kane, CM .
TRENDS IN GENETICS, 2003, 19 (10) :543-550
[4]  
Ausubel F.M., 1991, CURRENT PROTOCOLS MO
[5]   Genome-wide expression screens indicate a global role for protein kinase CK2 in chromatin remodeling [J].
Barz, T ;
Ackermann, K ;
Dubois, G ;
Eils, R ;
Pyerin, W .
JOURNAL OF CELL SCIENCE, 2003, 116 (08) :1563-1577
[6]   FACT facilitates transcription-dependent nucleosome alteration [J].
Belotserkovskaya, R ;
Oh, S ;
Bondarenko, VA ;
Orphanides, G ;
Studitsky, VM ;
Reinberg, D .
SCIENCE, 2003, 301 (5636) :1090-1093
[7]   Evidence that Spt6p controls chromatin structure by a direct interaction with histones [J].
Bortvin, A ;
Winston, F .
SCIENCE, 1996, 272 (5267) :1473-1476
[8]  
Brachmann CB, 1998, YEAST, V14, P115
[9]   Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression [J].
Brewster, NK ;
Johnston, GC ;
Singer, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (34) :21972-21979
[10]  
Costa PJ, 2000, GENETICS, V156, P535