Molten globule and native state ensemble of Helicobacter pylori flavodoxin:: Can crowding, osmolytes or cofactors stabilize the native conformation relative to the molten globule?

被引:20
作者
Cremades, N.
Sancho, J. [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Bioquim & Biol Mol & Celular, E-50009 Zaragoza, Spain
关键词
D O I
10.1529/biophysj.108.130153
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Partly unfolded protein conformations close in energy to the native state may be involved in protein functioning and also be related to folding diseases, but yet their structure and energetics are poorly understood. One such conformation, the monomeric and well-behaved molten globule of Helicobacter pylori apoflavodoxin, is here investigated to provide, in a wide pH interval, a complete thermodynamic description of its unfolding equilibrium and the equilibrium linking molten globule and native state. All thermodynamic and molecular properties of the molten globule here analyzed are characteristic of a partly unfolded conformation, and their differences with those of the native state are typically quantitative rather than qualitative. The stability data depict a native state ensemble where the relative populations of the different intermediates are strongly modulated by pH. Whereas the molten globule is dominant at pH 2.0, at neutral pH it is just the least stable of three partly unfolded intermediates populated by this protein. It is of interest that the energy rank of these intermediates at pH 7.0 is consistent with their likelihood to overcome the native state and become the more stable conformation when the native state protein is subjected to heat or mutation stress. Given the small volume difference between molten globule and native state, neither crowding agents nor osmolytes can drive the molten globule back to the native state. This observation, which is in qualitative accord with predictions of simple excluded volume theory, indicates that molecular crowding in vivo is not an effective mechanism to minimize partial unfolding events leading to equilibrium intermediates.
引用
收藏
页码:1913 / 1927
页数:15
相关论文
共 92 条
[1]   THERMODYNAMICS OF DENATURATION OF BARSTAR - EVIDENCE FOR COLD DENATURATION AND EVALUATION OF THE INTERACTION WITH GUANIDINE-HYDROCHLORIDE [J].
AGASHE, VR ;
UDGAONKAR, JB .
BIOCHEMISTRY, 1995, 34 (10) :3286-3299
[2]   Partially folded intermediates in insulin fibrillation [J].
Ahmad, A ;
Millett, IS ;
Doniach, S ;
Uversky, VN ;
Fink, AL .
BIOCHEMISTRY, 2003, 42 (39) :11404-11416
[3]   PREFERENTIAL INTERACTIONS DETERMINE PROTEIN SOLUBILITY IN 3-COMPONENT SOLUTIONS - THE MGCL2 SYSTEM [J].
ARAKAWA, T ;
BHAT, R ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1990, 29 (07) :1914-1923
[4]   Metrics that differentiate the origins of osmolyte effects on protein stability: A test of the surface tension proposal [J].
Auton, Matthew ;
Ferreon, Allan Chris M. ;
Bolen, D. Wayne .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 361 (05) :983-992
[5]   PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE [J].
BAI, YW ;
SOSNICK, TR ;
MAYNE, L ;
ENGLANDER, SW .
SCIENCE, 1995, 269 (5221) :192-197
[6]   THE INFLUENCE OF MACROMOLECULAR CROWDING ON THERMODYNAMIC ACTIVITY - SOLUBILITY AND DIMERIZATION CONSTANTS FOR SPHERICAL AND DUMBBELL-SHAPED MOLECULES IN A HARD-SPHERE MIXTURE [J].
BERG, OG .
BIOPOLYMERS, 1990, 30 (11-12) :1027-1037
[7]   The osmophobic effect: Natural selection of a thermodynamic force in protein folding [J].
Bolen, DW ;
Baskakov, IV .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (05) :955-963
[8]   The folding energy landscape of apoflavodoxin is rugged: Hydrogen exchange reveals nonproductive misfolded intermediates [J].
Bollen, YJM ;
Kamphuis, MB ;
van Mierlo, CPM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (11) :4095-4100
[9]   Formation of on- and off-pathway intermediates in the folding kinetics of Azotobacter vinelandii apoflavodoxin [J].
Bollen, YJM ;
Sánchez, IE ;
van Mierlo, CPM .
BIOCHEMISTRY, 2004, 43 (32) :10475-10489
[10]   Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [J].
Booth, DR ;
Sunde, M ;
Bellotti, V ;
Robinson, CV ;
Hutchinson, WL ;
Fraser, PE ;
Hawkins, PN ;
Dobson, CM ;
Radford, SE ;
Blake, CCF ;
Pepys, MB .
NATURE, 1997, 385 (6619) :787-793