Bioinspired synthesis of mineralized collagen fibrils

被引:209
作者
Deshpande, Atul S.
Beniash, Elia [1 ]
机构
[1] Univ Pittsburgh, Sch Dent Med, Dept Oral Biol, Ctr Craniofacial Regenerat, Pittsburgh, PA 15261 USA
关键词
D O I
10.1021/cg800252f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mineralized collagen fibrils constitute a basic structural unit of collagenous mineralized tissues such as dentin and bone. Understanding of the mechanisms of collagen mineralization is vital for development of new materials for the hard tissue repair. We carried out bioinspired mineralization of reconstituted collagen fibrils using Poly L-aspartic acid, as an analogue of noncollagenous acidic proteins. Transmission electron microscopy and electron diffraction studies of the reaction products revealed stacks of ribbon-shaped apatitic crystals, deposited within the fibrils with their c-axes coaligned with the fibril axes. Such structural organization closely resembles mineralized collagen of bone and dentin. Initial mineral deposits formed in the fibrils lacked a long-range crystallographic order and transformed into crystals with time. Interestingly, the shape and organization of these amorphous deposits were similar to the crystals found in the mature mineralized fibrils. We demonstrate that the interactions between collagen and Poly L-aspartic acid are essential for the mineralized collagen fibrils formation, while collagen alone does not affect mineral formation and Poly L-aspartic acid inhibits mineralization in a concentration dependent manner. These results provide new insights into basic mechanisms of collagen mineralization and can lead to the development of novel bioinspired nanostructured materials.
引用
收藏
页码:3084 / 3090
页数:7
相关论文
共 61 条
[1]   CONTROL AND DESIGN PRINCIPLES IN BIOLOGICAL MINERALIZATION [J].
ADDADI, L ;
WEINER, S .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1992, 31 (02) :153-169
[2]   Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization [J].
Addadi, L ;
Raz, S ;
Weiner, S .
ADVANCED MATERIALS, 2003, 15 (12) :959-970
[3]   Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates [J].
Aizenberg, J ;
Lambert, G ;
Addadi, L ;
Weiner, S .
ADVANCED MATERIALS, 1996, 8 (03) :222-&
[4]   Direct fabrication of large micropatterned single crystals [J].
Aizenberg, J ;
Muller, DA ;
Grazul, JL ;
Hamann, DR .
SCIENCE, 2003, 299 (5610) :1205-1208
[5]   Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton [J].
Aizenberg, J ;
Lambert, G ;
Weiner, S ;
Addadi, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (01) :32-39
[6]   ISOLATION AND CHARACTERIZATION OF CALCIFYING MATRIX VESICLES FROM EPIPHYSEAL CARTILAGE [J].
ALI, SY ;
SAJDERA, SW ;
ANDERSON, HC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1970, 67 (03) :1513-+
[7]   The role of matrix vesicles in growth plate development and biomineralization [J].
Anderson, HC ;
Garimella, R ;
Tague, SE .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2005, 10 :822-837
[8]   THE ENAMEL FLUID IN THE EARLY SECRETORY STAGE OF PORCINE AMELOGENESIS - CHEMICAL-COMPOSITION AND SATURATION WITH RESPECT TO ENAMEL MINERAL [J].
AOBA, T ;
MORENO, EC .
CALCIFIED TISSUE INTERNATIONAL, 1987, 41 (02) :86-94
[9]   Cellular control over spicule formation in sea urchin embryos: A structural approach [J].
Beniash, E ;
Addadi, L ;
Weiner, S .
JOURNAL OF STRUCTURAL BIOLOGY, 1999, 125 (01) :50-62
[10]   Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth [J].
Beniash, E ;
Aizenberg, J ;
Addadi, L ;
Weiner, S .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1380) :461-465