LabelMe: A database and web-based tool for image annotation

被引:2472
作者
Russell, Bryan C. [1 ]
Torralba, Antonio [1 ]
Murphy, Kevin P. [2 ]
Freeman, William T. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Univ British Columbia, Dept Comp Sci & Stat, Vancouver, BC V6T 1Z4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
database; annotation tool; object recognition; object detection;
D O I
10.1007/s11263-007-0090-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.
引用
收藏
页码:157 / 173
页数:17
相关论文
共 44 条
[1]  
ABRAMSON Y, 2005, INT C COMP VIS PATT
[2]   Learning to detect objects in images via a sparse, part-based representation [J].
Agarwal, S ;
Awan, A ;
Roth, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (11) :1475-1490
[3]  
[Anonymous], 2006, CVPR
[4]  
[Anonymous], P SIGCHI C HUM FACT
[5]  
[Anonymous], 1999, The Nature Statist. Learn. Theory
[6]  
[Anonymous], IEEE INT C COMP VIS
[7]  
[Anonymous], IEEE CVPR 2004 WORKS
[8]  
[Anonymous], P 10 IEEE COMP SOC I
[9]  
[Anonymous], 2004, ECCV
[10]  
[Anonymous], 2006, PASCAL VISUAL OBJECT