MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat

被引:165
作者
Western, TL [1 ]
Young, DS [1 ]
Dean, GH [1 ]
Tan, WL [1 ]
Samuels, AL [1 ]
Haughn, GW [1 ]
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
10.1104/pp.103.035519
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis seed coat epidermis undergoes a complex process of differentiation that includes the biosynthesis and secretion of large quantities of pectinaceous mucilage, cytoplasmic rearrangement, and secondary cell wall biosynthesis. Mutations in MUM4 (MUCILAGE-MODIFIED4) lead to a decrease in seed coat mucilage and incomplete cytoplasmic rearrangement. We show that MUM4 encodes a putative NDP-L-rhamnose synthase, an enzyme required for the synthesis of the pectin rhamnogalacturonan I, the major component of Arabidopsis mucilage. This result suggests that the synthesis of monosaccharide substrates is a limiting factor in the biosynthesis of pectinaceous seed coat mucilage. In addition, the reduced cytoplasmic rearrangement observed in the absence of a key enzyme in pectin biosynthesis in mum4 mutants establishes a causal link between mucilage production and cellular morphogenesis. The cellular phenotype seen in mum4 mutants is similar to that of several transcription factors (AP2 [APETALA2], TTG1 [TRANSPARENT TESTA GLABRA1], TTG2 MYB61, and GL2 [GLABRA2]). Expression studies suggest that MUM4 is developmentally regulated in the seed coat by AP2, TTG1, and GL2, whereas TTG2 and MYB61 appear to be regulating mucilage production through alternate pathway(s). Our results provide a framework for the regulation of mucilage production and secretory cell differentiation.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 35 条
[1]   The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar typhimurium, the second enzyme in the dTDP-L-rhamnose pathway [J].
Allard, STM ;
Giraud, MF ;
Whitfield, C ;
Graninger, M ;
Messner, P ;
Naismith, JH .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :283-295
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   Histological study of seed coat development in Arabidopsis thaliana [J].
Beeckman, T ;
De Rycke, R ;
Viane, R ;
Inzé, D .
JOURNAL OF PLANT RESEARCH, 2000, 113 (1110) :139-148
[4]  
Boesewinkel FD., 1995, Seed development and germination, P1
[5]   A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis [J].
Bonin, CP ;
Reiter, WD .
PLANT JOURNAL, 2000, 21 (05) :445-454
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]  
DOWNING WL, 1992, PLANT J, V2, P685, DOI 10.1046/j.1365-313X.1992.t01-11-00999.x
[8]   Uronic acid-containing oligosaccharins: Their biosynthesis, degradation and signalling roles in non-diseased plant tissues [J].
Dumville, JC ;
Fry, SC .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2000, 38 (1-2) :125-140
[9]  
Feingold D. S., 1982, Encyclopedia of plant physiology. New series. Volume 13 A. Plant carbohydrates.I. Intracellular carbohydrates [Loewus, R.A.
[10]  
Tanner, W. (Editors)], P3