Mrr instigates the SOS response after high pressure stress in Escherichia coli

被引:64
作者
Aertsen, A [1 ]
Michiels, CW [1 ]
机构
[1] Katholieke Univ Leuven, Food Microbiol Lab, B-3001 Heverlee, Belgium
关键词
D O I
10.1111/j.1365-2958.2005.04903.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterial SOS response is not only a vital reply to DNA damage but also constitutes an essential mechanism for the generation of genetic variability that in turn fuels adaptation and resistance development in bacterial populations. Despite the extensive depiction of the SOS regulon itself, its activation by stresses different from typical DNA damaging treatments remains poorly characterized. Recently, we reported the RecA- and LexA-dependent induction of the SOS response in Escherichia coli MG1655 after exposure to high hydrostatic pressure (HP, similar to 100 MPa), a physical stress of which the cellular effects are not well known. We now found this HP mediated SOS response to depend on RecB and not on RecF, which is a strong indication for the involvement of double strand breaks. As the pressures used in this work are thermodynamically unable to break covalent bonds in DNA, we hypothesized the involvement of a cellular function or pathway in the formation of this lesion. A specialized screening allowed us to identify the cryptic type IV restriction endonuclease Mrr as the final effector of this pathway. The HP SOS response and its corresponding phenotypes could be entirely attributed to the HP triggered activation of Mrr restriction activity. Several spontaneously occurring alleles of mrr, incapable of triggering the HP-induced SOS response, were isolated and characterized. These results provide evidence for a specific pathway that transmits the perception of HP stress to induction of the SOS response and support a role for Mrr in bacterial stress physiology.
引用
收藏
页码:1381 / 1391
页数:11
相关论文
共 48 条
[1]   Diversify or die: Generation of diversity in response to stress [J].
Aertsen, A ;
Michiels, CW .
CRITICAL REVIEWS IN MICROBIOLOGY, 2005, 31 (02) :69-78
[2]   Induction of oxidative stress by high hydrostatic pressure in Escherichia coli [J].
Aertsen, A ;
De Spiegeleer, P ;
Vanoirbeek, K ;
Lavilla, M ;
Michiels, CW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (05) :2226-2231
[3]   Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure [J].
Aertsen, A ;
Faster, D ;
Michiels, CW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (03) :1155-1162
[4]   SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants [J].
Aertsen, A ;
Michiels, CW .
RESEARCH IN MICROBIOLOGY, 2005, 156 (02) :233-237
[5]   An SOS response induced by high pressure in Escherichia coli [J].
Aertsen, A ;
Van Houdt, R ;
Vanoirbeek, K ;
Michiels, CW .
JOURNAL OF BACTERIOLOGY, 2004, 186 (18) :6133-6141
[6]   Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli [J].
Aertsen, A ;
Vanoirbeek, K ;
De Spiegeleer, P ;
Sermon, J ;
Hauben, K ;
Farewell, A ;
Nyström, T ;
Michiels, CW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (05) :2660-2666
[7]   High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes [J].
Balny, C ;
Masson, P ;
Heremans, K .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2002, 1595 (1-2) :3-10
[8]   Pressure effects on in vivo microbial processes [J].
Bartlett, DH .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2002, 1595 (1-2) :367-381
[9]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[10]   Identification of a PD-(D/E)XK-like domain with a novel configuration of the endonuclease active site in the methyl-directed restriction enzyme Mrr and its homologs [J].
Bujnicki, JM ;
Rychlewski, L .
GENE, 2001, 267 (02) :183-191