Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase

被引:78
作者
Nandi, A
Krothapalli, K
Buseman, CM
Li, MY
Welti, R
Enyedi, A
Shah, J [1 ]
机构
[1] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[2] Kansas State Univ, Mol Cellular & Dev Biol Program, Manhattan, KS 66506 USA
[3] Western Michigan Univ, Dept Sci Biol, Kalamazoo, MI 49008 USA
关键词
D O I
10.1105/tpc.015529
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A loss-of-function mutation in the Arabidopsis SSI2/FAB2 gene, which encodes a plastidic stearoyl-acyl-carrier protein desaturase, has pleiotropic effects. The ssi2 mutant plant is dwarf, spontaneously develops lesions containing dead cells, accumulates increased salicylic acid (SA) levels, and constitutively expresses SA-mediated, NPR1-dependent and -independent defense responses. In parallel, jasmonic acid-regulated signaling is compromised in the ssi2 mutant. In an effort to discern the involvement of lipids in the ssi2-conferred developmental and defense phenotypes, we identified suppressors of fatty acid (stearoyl) desaturase deficiency (sfd) mutants. The sfd1, sfd2, and sfd4 mutant alleles suppress the ssi2-conferred dwarfing and lesion development, the NPR1-independent expression of the PATHOGENESIS-RELATED1 (PR1) gene, and resistance to Pseudomonas syringae pv maculicola. The sfd1 and sfd4 mutant alleles also depress ssi2-conferred PR1 expression in NPR1-containing sfd1 ssi2 and sfd4 ssi2 plants. By contrast, the sfd2 ssi2 plant retains the ssi2-conferred high-level expression of PR1. In parallel with the loss of ssi2-conferred constitutive SA signaling, the ability of jasmonic acid to activate PDF1.2 expression is reinstated in the sfd1 ssi2 npr1 plant. sfd4 is a mutation in the FAD6 gene that encodes a plastidic omega6-desaturase that is involved in the synthesis of polyunsaturated fatty acid-containing lipids. Because the levels of plastid complex lipid species containing hexadecatrienoic acid are depressed in all of the sfd ssi2 npr1 plants, we propose that these lipids are involved in the manifestation of the ssi2-conferred phenotypes.
引用
收藏
页码:2383 / 2398
页数:16
相关论文
共 62 条
[1]   Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression [J].
Anderson, MD ;
Chen, ZX ;
Klessig, DF .
PHYTOCHEMISTRY, 1998, 47 (04) :555-566
[2]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[3]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[4]   Variation in Aurelia aurita. [J].
Browne, ET .
BIOMETRIKA, 1901, 1 :90-108
[5]   FLUXES THROUGH THE PROKARYOTIC AND EUKARYOTIC PATHWAYS OF LIPID-SYNTHESIS IN THE 16-3 PLANT ARABIDOPSIS-THALIANA [J].
BROWSE, J ;
WARWICK, N ;
SOMERVILLE, CR ;
SLACK, CR .
BIOCHEMICAL JOURNAL, 1986, 235 (01) :25-31
[6]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[7]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[8]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[9]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[10]   ARABIDOPSIS SIGNAL-TRANSDUCTION MUTANT DEFECTIVE IN CHEMICALLY AND BIOLOGICALLY INDUCED DISEASE RESISTANCE [J].
DELANEY, TP ;
FRIEDRICH, L ;
RYALS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6602-6606