Mutually delay-coupled semiconductor lasers:: Mode bifurcation scenarios

被引:59
作者
Erzgräber, H
Lenstra, D
Krauskopf, B
Wille, E
Peil, M
Fischer, I
Elsässer, W
机构
[1] Vrije Univ Amsterdam, Afdeling Natuurkunde Sterrenkunde, NL-1081 HV Amsterdam, Netherlands
[2] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[3] Tech Univ Eindhoven, Res Inst COBRA, NL-5600 MB Eindhoven, Netherlands
[4] Tech Univ Darmstadt, Inst Appl Phys, D-64289 Darmstadt, Germany
关键词
coupled semiconductor lasers; delay-instabilities; bifurcation analysis;
D O I
10.1016/j.optcom.2005.06.016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the spectral and dynamical behavior of two identical, mutually delay-coupled semiconductor lasers. We concentrate on the short coupling-time regime where the number of basic states of the system, the compound laser modes (CLMs), is small so that their individual behavior can be studied both experimentally and theoretically. As such it constitutes a prototype example of delay-coupled laser systems, which play an important role, e.g., in telecommunication. Specifically, for small spectral detuning we find several stable CLMs of the coupled system where both lasers lock onto a common frequency and emit continuous wave output. A bifurcation analysis of the CLMs in the full rate equation model with delay reveals the structure of stable and unstable CLMs. We find a characteristic bifurcation scenario as a function of the detuning and the coupling phase between the two lasers that explains experimentally observed multistabilities and mode jumps in the locking region. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:286 / 296
页数:11
相关论文
共 33 条
[1]   COUPLED OSCILLATORS AT A DISTANCE - APPLICATIONS TO COUPLED SEMICONDUCTOR-LASERS [J].
DENTE, GC ;
MOELLER, CE ;
DURKIN, PS .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (06) :1014-1022
[2]  
Diekmann O., 1995, DELAY EQUATIONS FUNC
[3]  
ENGELBORGHS K, 2001, TW330 K U LEUV DEP C
[4]   Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication [J].
Fischer, I ;
Liu, Y ;
Davis, P .
PHYSICAL REVIEW A, 2000, 62 (01) :4
[5]   Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback [J].
Haegeman, B ;
Engelborghs, K ;
Roose, D ;
Pieroux, D ;
Erneux, T .
PHYSICAL REVIEW E, 2002, 66 (04) :11-046216
[6]  
Hale J.K., 1993, Introduction to Functional Differential Equations, DOI DOI 10.1007/978-1-4612-4342-7
[7]   Dynamics of semiconductor lasers subject to delayed optical feedback:: The short cavity regime -: art. no. 243901 [J].
Heil, T ;
Fischer, I ;
Elsässer, W ;
Gavrielides, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (24) :243901-1
[8]   Delay dynamics of semiconductor lasers with short external cavities:: Bifurcation scenarios and mechanisms -: art. no. 066214 [J].
Heil, T ;
Fischer, I ;
Elsässer, W ;
Krauskopf, B ;
Green, K ;
Gavrielides, A .
PHYSICAL REVIEW E, 2003, 67 (06) :11
[9]   Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers [J].
Heil, T ;
Fischer, I ;
Elsässer, W ;
Mulet, J ;
Mirasso, CR .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :795-798
[10]   All-optical flip-flop based on coupled laser diodes [J].
Hill, MT ;
de Waardt, H ;
Khoe, GD ;
Dorren, HJS .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (03) :405-413