Topologically protected qubits from a possible non-Abelian fractional quantum Hall state

被引:534
作者
Das Sarma, S [1 ]
Freedman, M
Nayak, C
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Microsoft Res, Redmond, WA 98052 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.94.166802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at a Landau-level filling fraction nu=5/2. This is particularly intriguing because this state has unusual topological properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine the nature of the nu=5/2 state, one must measure the quasiparticle braiding statistics. Here, we propose an experiment which can simultaneously determine the braiding statistics of quasiparticle excitations and, if they prove to be non-Abelian, produce a topologically protected qubit on which a logical Not operation is performed by quasiparticle braiding. Using the measured excitation gap at nu=5/2, we estimate the error rate to be 10(-30) or lower.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Two point-contact interferometer for quantum Hall systems [J].
Chamon, CDC ;
Freed, DE ;
Kivelson, SA ;
Sondhi, SL ;
Wen, XG .
PHYSICAL REVIEW B, 1997, 55 (04) :2331-2343
[2]  
Das Sarma S., 1997, PERSPECTIVES QUANTUM
[3]  
DASSARMA S, CONDMAT0411755
[4]  
Einstein J. P., 2002, PHYS REV LETT, V88
[5]   A Chern-Simons effective field theory for the Pfaffian quantum Hall state [J].
Fradkin, E ;
Nayak, C ;
Tsvelik, A ;
Wilczek, F .
NUCLEAR PHYSICS B, 1998, 516 (03) :704-718
[6]  
FREEDMAN M, CONDMAT0309120
[7]   A modular functor which is universal for quantum computation [J].
Freedman, MH ;
Larsen, M ;
Wang, ZH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :605-622
[8]   REPRESENTATIONS OF A LOCAL CURRENT-ALGEBRA IN NONSIMPLY CONNECTED SPACE AND THE AHARONOV-BOHM EFFECT [J].
GOLDIN, GA ;
MENIKOFF, R ;
SHARP, DH .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) :1664-1668
[9]   RESONANT-TUNNELING IN THE QUANTUM HALL REGIME - MEASUREMENT OF FRACTIONAL CHARGE [J].
GOLDMAN, VJ ;
SU, B .
SCIENCE, 1995, 267 (5200) :1010-1012
[10]   Theory of fault-tolerant quantum computation [J].
Gottesman, D .
PHYSICAL REVIEW A, 1998, 57 (01) :127-137