Atmospheric fate of OH initiated oxidation of terpenes.: Reaction mechanism of α-pinene degradation and secondary organic aerosol formation

被引:59
作者
Librando, V [1 ]
Tringali, G [1 ]
机构
[1] Univ Catania, Dipartimento Sci Chim, I-95126 Catania, Italy
关键词
monoterpenes; OH oxidation; aerosol phase; alpha-pinene; SOA;
D O I
10.1016/j.jenvman.2005.01.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper studies the reaction products of alpha-pinene, beta-pinene, sabinene, 3-carene and limonene with OH radicals and of alpha-pinene with ozone using FF-IR spectroscopy for measuring gas phase products and HPLC-MS-MS to measure products in the aerosol phase. These techniques were used to investigate the secondary organic aerosol (SOA) formation from the terpenes. The gas phase reaction products were all quantified using reference compounds. At low terpene concentrations (0.9-2.1 ppm), the molar yields of gas phase reaction products were: HCHO 16-92%, HCOOH 10-54% (OH source: H2O2,6-25 ppm); HCHO 127-148%, HCOOH 4-6% (OH source: CH3ONO, 5-8 ppm). At high terpene concentrations (4.1-13.2 ppm) the results were: HCHO 9-27%, HCOOH 15-23%, CH3(CO)CH3 0-14%, CH3COOH 0-5%, nopinone 24% (only from beta-pinene oxidation), limona ketone 61 % (only from limonene oxidation), pinonaldehyde was identified during a-pinene degradation (OH source H2O2, 23-30 ppm); HCHO 76-183%, HCOOH 12-15%, CH3(CO)CH3 0-12%, nopinone 17% (from beta-pinene oxidation), limona ketone 48% (from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source CH3ONO, 14-16 ppm). Pinic acid, pinonic acid, limonic acid, limoninic acid, 3-caric acid, 3-caronic acid and sabinic acid were identified in the aerosol phase. On the basis of these results, we propose a formation mechanism for pinonic and pinic acid in the aerosol phase explaining how degradation products could influence SOA formation and growth ill the troposphere. (c) 2005 Published by Elsevier Ltd.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 43 条
[1]   Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry [J].
Andreae, MO ;
Crutzen, PJ .
SCIENCE, 1997, 276 (5315) :1052-1058
[2]   PRODUCT STUDY OF THE GAS-PHASE REACTIONS OF MONOTERPENES WITH THE OH RADICAL IN THE PRESENCE OF NOX [J].
AREY, J ;
ATKINSON, R ;
ASCHMANN, SM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D11) :18539-18546
[3]   Products of the gas phase reactions of the OH radical with α- and β-pinene in the presence of NO [J].
Aschmann, SM ;
Reissell, A ;
Atkinson, R ;
Arey, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25553-25561
[4]   Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and alkenes [J].
Atkinson, R .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (02) :215-290
[5]  
Atkinson R, 1998, INT J CHEM KINET, V30, P577, DOI 10.1002/(SICI)1097-4601(1998)30:8<577::AID-KIN7>3.0.CO
[6]  
2-P
[7]   Atmospheric chemistry of biogenic organic compounds [J].
Atkinson, R ;
Arey, J .
ACCOUNTS OF CHEMICAL RESEARCH, 1998, 31 (09) :574-583
[8]   Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modeling approach [J].
Aumont, B ;
Madronich, S ;
Bey, I ;
Tyndall, GS .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2000, 35 (01) :59-75
[9]  
BROCKMANN KJ, 1996, P EUROTRAC S
[10]   Gas-phase terpene oxidation products: a review [J].
Calogirou, A ;
Larsen, BR ;
Kotzias, D .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (09) :1423-1439