Kolmogorov-Sinai entropy rate versus physical entropy

被引:175
作者
Latora, V [1 ]
Baranger, M
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.82.520
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We elucidate the connection between the Kolmogorov-Sinai entropy rate kappa and the time evolution of the physical or statistical entropy S. For a large family of chaotic conservative dynamical systems including the simplest ones, the evolution of S(t) for far-from-equilibrium processes includes a stage during which S is a simple linear function of time whose slope is kappa. We present numerical confirmation of this connection for a number of chaotic symplectic maps, ranging from the simplest two-dimensional ones to a four-dimensional and strongly nonlinear map. [S0031-9007(98)08099-5].
引用
收藏
页码:520 / 523
页数:4
相关论文
共 16 条
[1]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[2]  
Balian R, 1991, MICROPHYSICS MACROPH, VI
[3]  
BALIAN R, 1991, MICROPHYSICS MACROPH, V1, P135
[4]  
BARANGER M, IN PRESS
[5]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[6]  
BILLINGSLEY P, 1965, ERGODIC THEORY INFOR, P61
[7]   Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas [J].
Dellago, C ;
Posch, HA .
PHYSICAL REVIEW E, 1997, 55 (01) :R9-R12
[8]   Universal relation between the Kolmogorov-Sinai entropy and the thermodynamical entropy in simple liquids [J].
Dzugutov, M ;
Aurell, E ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1998, 81 (09) :1762-1765
[9]   Time evolution of coarse-grained entropy in classical and quantum motions of strongly chaotic systems [J].
Gu, Y ;
Wang, J .
PHYSICS LETTERS A, 1997, 229 (04) :208-216
[10]  
KOLMOGOROV AN, 1958, DOKL AKAD NAUK SSSR+, V119, P861