Regulation of Na,K-ATPase transport activity by protein kinase C

被引:67
作者
Pedemonte, CH
Pressley, TA
Lokhandwala, MF
Cinelli, AR
机构
[1] TEXAS TECH UNIV,HLTH SCI CTR,DEPT PHYSIOL,LUBBOCK,TX 79430
[2] SUNY HLTH SCI CTR,DEPT ANAT & CELL BIOL,BROOKLYN,NY 11203
关键词
Na+; K+-ATPase; Na+-pump; Na+-transport;
D O I
10.1007/s002329900174
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase alpha-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+ ATPase activity. To determine whether the alpha-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase alpha-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant pheno-type characteristic of rodent kidney cells. The presence of the alpha-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent alpha 1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type alpha 1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the alpha-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the alpha-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 56 条
[1]   ACTIVATION/DEACTIVATION OF RENAL NA+,K+-ATPASE - A FINAL COMMON PATHWAY FOR REGULATION OF NATRIURESIS [J].
APERIA, A ;
HOLTBACK, U ;
SYREN, ML ;
SVENSSON, LB ;
FRYCKSTEDT, J ;
GREENGARD, P .
FASEB JOURNAL, 1994, 8 (06) :436-439
[2]   CALCINEURIN MEDIATES ALPHA-ADRENERGIC STIMULATION OF NA+,K+-ATPASE ACTIVITY IN RENAL TUBULE CELLS [J].
APERIA, A ;
IBARRA, F ;
SVENSSON, LB ;
KLEE, C ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7394-7397
[3]   NOREPINEPHRINE INCREASES NA+-K+-ATPASE AND SOLUTE TRANSPORT IN RABBIT PROXIMAL TUBULES [J].
BEACH, RE ;
SCHWAB, SJ ;
BRAZY, PC ;
DENNIS, VW .
AMERICAN JOURNAL OF PHYSIOLOGY, 1987, 252 (02) :F215-F220
[4]  
BEGUIN P, 1994, J BIOL CHEM, V269, P24437
[5]   PHOSPHORYLATION OF THE CATALYTIC SUBUNIT OF NA+,K+-ATPASE INHIBITS THE ACTIVITY OF THE ENZYME [J].
BERTORELLO, AM ;
APERIA, A ;
WALAAS, SI ;
NAIRN, AC ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11359-11362
[6]   SHORT-TERM REGULATION OF RENAL NA-K-ATPASE ACTIVITY - PHYSIOLOGICAL RELEVANCE AND CELLULAR MECHANISMS [J].
BERTORELLO, AM ;
KATZ, AI .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (06) :F743-F755
[7]  
CHIBALIN AV, 1992, J BIOL CHEM, V267, P22378
[8]   SALAMANDER OLFACTORY-BULB NEURONAL-ACTIVITY OBSERVED BY VIDEO-RATE, VOLTAGE-SENSITIVE DYE IMAGING .3. SPATIAL AND TEMPORAL PROPERTIES OF RESPONSES EVOKED BY ODORANT STIMULATION [J].
CINELLI, AR ;
HAMILTON, KA ;
KAUER, JS .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (05) :2053-2071
[9]   REPOLARIZATION OF NA+-K+ PUMPS DURING ESTABLISHMENT OF EPITHELIAL MONOLAYERS [J].
CONTRERAS, RG ;
AVILA, G ;
GUTIERREZ, C ;
BOLIVAR, JJ ;
GONZALEZMARISCAL, L ;
DARZON, A ;
BEATY, G ;
RODRIGUEZBOULAN, E ;
CEREIJIDO, M .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (05) :C896-C905
[10]  
DALY SE, 1994, J BIOL CHEM, V269, P23944