Amyloid beta peptide (A beta), a 39 to 43 amino acid fragment of the beta -amyloid precursor protein (beta APP), forms insoluble fibrillar accumulation in neurofibrillary tangles and vascular plaques. A beta has been implicated in neuronal and vascular degeneration in brain regions susceptible to plaque formation because of its cytotoxic effect on neurons and endothelial cells (ECs). The authors used a murine cerebral endothelial cell (CEC) line and primary cultures of bovine CECs to explore the cytotoxic mechanism of A beta. A beta 1-40 and A beta 25-35 peptides caused cell death in a dose-dependent and time-dependent manner. Exposure to either A beta 25-35 or A beta 1-40 at 10 mu mol/L for 48 hours caused at least 40% cell death. Cerebral endothelial cell death was characterized by nuclear condensation, mitochondrial dysfunction, and nuclear and mitochondrial DNA damage. A beta 25-35 activated both caspase-8 and caspase-3 in murine CECs. zVAD-fmk, a broad-spectrum caspase inhibitor, prevented A beta 25-35-induced increase in caspase-3 activity and CEC death. N-acetyl-cysteine, an antioxidant, also prevented A beta -induced cell death. Together, these findings indicate that A beta -mediated CEC death is an apoptotic process that is characterized by increased oxidative stress, caspase activation, mitochondrial dysfunction, and nuclear and mitochondrial DNA damage.