Matchings and phylogenetic trees

被引:41
作者
Diaconis, PW
Holmes, SP
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] INRA, F-34060 Montpellier, France
关键词
D O I
10.1073/pnas.95.25.14600
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a natural coordinate system for phylogenetic trees using a correspondence with the set of perfect matchings in the complete graph. This correspondence produces a distance between phylogenetic trees, and a way of enumerating all trees in a minimal step order. It is useful in randomized algorithms because it enables moves on the space of trees that make random optimization strategies "mix" quickly. It also promises a generalization to intermediary trees when data are not decisive as to their choice of tree, and a new way of constructing Bayesian priors on tree space.
引用
收藏
页码:14600 / 14602
页数:3
相关论文
共 23 条
[1]  
[Anonymous], 1998, ENUMERATIVE COMBINAT
[2]  
[Anonymous], CONT MATH
[3]  
BARKER D, 1997, LVB 1 0 RECONSTRUCTI
[4]   On algebras which are connected with the semisimple continuous groups [J].
Brauer, R .
ANNALS OF MATHEMATICS, 1937, 38 :857-872
[5]  
CAVALLISFORZA LL, 1967, EVOLUTION, V21, P550, DOI 10.1111/j.1558-5646.1967.tb03411.x
[6]  
Critchlow DE, 1985, LECT NOTES STAT
[7]   GRAY CODES FOR RANDOMIZATION PROCEDURES [J].
DIACONIS, P ;
HOLMES, S .
STATISTICS AND COMPUTING, 1994, 4 (04) :287-302
[8]   PARSIMONIOUS PHYLOGENETIC TREES IN METRIC-SPACES AND SIMULATED ANNEALING [J].
DRESS, A ;
KRUGER, M .
ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (01) :8-37
[9]  
ERDOS PL, 1989, ADV APPL MATH, V10, P488
[10]  
Felsenstein J., 1993, PHYLIP