Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro

被引:88
作者
Daigle, DM [1 ]
Brown, ED [1 ]
机构
[1] McMaster Univ, Dept Biochem, Antimicrobial Res Ctr, Hamilton, ON L8N 3Z5, Canada
关键词
D O I
10.1128/JB.186.5.1381-1387.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Escherichia coli YjeQ represents a conserved group of bacteria-specific nucleotide-binding proteins of unknown physiological function that have been shown to be essential to the growth of E. coli and Bacillus subtilis. The protein has previously been characterized as possessing a slow steady-state GTP hydrolysis activity (8 h(-1)) (D. M. Daigle, L. Rossi, A. M. Berghuis, L. Aravind, E. V. Koonin, and E. D. Brown, Biochemistry 41:11109-11117, 2002). In the work reported here, YjeQ from E. coli was found to copurify with ribosomes from cell extracts. The copy number of the protein per cell was nevertheless low relative to the number of ribosomes (ratio of YjeQ copies to ribosomes, 1:200). In vitro, recombinant YjeQ protein interacted strongly with the 30S ribosomal subunit, and the stringency of that interaction, revealed with salt washes, was highest in the presence of the nonhydrolyzable GTP analog 5'-guanylylimidodiphosphate (GMP-PNP). Likewise, association with the 30S subunit resulted in a 160-fold stimulation of YjeQ GTPase activity, which reached a maximum with stoichiometric amounts of ribosomes. N-terminal truncation variants of YjeQ revealed that the predicted OB-fold region was essential for ribosome binding and GTPase stimulation, and they showed that an N-terminal peptide (amino acids 1 to 20 in YjeQ) was necessary for the GMP-PNP-dependent interaction of YjeQ with the 30S subunit. Taken together, these data indicate that the YjeQ protein participates in a guanine nucleotide-dependent interaction with the ribosome and implicate this conserved, essential GTPase as a novel factor in ribosome function.
引用
收藏
页码:1381 / 1387
页数:7
相关论文
共 17 条
[1]  
AN G, 1980, CAN J BIOCHEM, V97, P23
[2]   The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis [J].
Aoki, H ;
Dekany, K ;
Adams, SL ;
Ganoza, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32254-32259
[3]   OB-fold domains: a snapshot of the evolution of sequence, structure and function [J].
Arcus, V .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (06) :794-801
[4]   A genome-based approach for the identification of essential bacterial genes [J].
Arigoni, F ;
Talabot, F ;
Peitsch, M ;
Edgerton, MD ;
Meldrum, E ;
Allet, E ;
Fish, R ;
Jamotte, T ;
Curchod, ML ;
Loferer, H .
NATURE BIOTECHNOLOGY, 1998, 16 (09) :851-856
[5]  
AUSUBEL FM, 1994, CURRENT PROTOCOLS MO, V2, pCH11
[6]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[7]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics [J].
Daigle, DM ;
Rossi, L ;
Berghuis, AM ;
Aravind, L ;
Koonin, EV ;
Brown, ED .
BIOCHEMISTRY, 2002, 41 (37) :11109-11117
[10]   CALCULATION OF PROTEIN EXTINCTION COEFFICIENTS FROM AMINO-ACID SEQUENCE DATA [J].
GILL, SC ;
VONHIPPEL, PH .
ANALYTICAL BIOCHEMISTRY, 1989, 182 (02) :319-326