Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance

被引:231
作者
Simpson, JR
Snyder, AZ
Gusnard, DA
Raichle, ME
机构
[1] Washington Univ, Sch Med, Edward Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
关键词
D O I
10.1073/pnas.98.2.683
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regional cerebral blood flow (BF) was examined in regions of the medial prefrontal cortex (MPFC) with positron-emission tomography while subjects performed two cognitive tasks, reading nouns aloud and generating appropriate Verbs for the same nouns. The control task was passive viewing of the same words. BF was reduced in regions of the MPFC during word reading and naive verb generation, relative to a control state in which the subjects passively viewed nouns. Practicing verb generation produced improved performance, as measured by response time, which was strongly correlated with further reductions in MPFC and hypothalamic BF, After practice, when verb generation was performed on a novel list of words, reaction times slowed and the pattern of MPFC BF reverted to that seen in the word reading and naive conditions. A separate behavioral study of the verb-generation task indicated that anxiety, high during naive use-generation as measured by heart rate and self-report, decreased with practice on the task but returned with the introduction of a novel list of words. Taken together, these results suggest that the MPFC is part of a network, including the hypothalamus and brainstem, whose activity reflects a dynamic interplay between cognitive task performance and emotion.
引用
收藏
页码:683 / 687
页数:5
相关论文
共 48 条
[1]   COLUMNAR ORGANIZATION IN THE MIDBRAIN PERIAQUEDUCTAL GRAY - MODULES FOR EMOTIONAL EXPRESSION [J].
BANDLER, R ;
SHIPLEY, MT .
TRENDS IN NEUROSCIENCES, 1994, 17 (09) :379-389
[2]   ORGANIZATION OF CORTICAL AFFERENT INPUT TO ORBITOFRONTAL AREAS IN THE RHESUS-MONKEY [J].
BARBAS, H .
NEUROSCIENCE, 1993, 56 (04) :841-864
[3]   ANATOMIC BASIS OF COGNITIVE-EMOTIONAL INTERACTIONS IN THE PRIMATE PREFRONTAL CORTEX [J].
BARBAS, H .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 1995, 19 (03) :499-510
[4]   INSENSITIVITY TO FUTURE CONSEQUENCES FOLLOWING DAMAGE TO HUMAN PREFRONTAL CORTEX [J].
BECHARA, A ;
DAMASIO, AR ;
DAMASIO, H ;
ANDERSON, SW .
COGNITION, 1994, 50 (1-3) :7-15
[5]  
BIGELOW HJ, 1850, AM J MED SCI, V39, P2
[6]   Cognitive and emotional influences in anterior cingulate cortex [J].
Bush, G ;
Luu, P ;
Posner, MI .
TRENDS IN COGNITIVE SCIENCES, 2000, 4 (06) :215-222
[7]   Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys [J].
Carmichael, ST ;
Price, JL .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 363 (04) :642-664
[8]   Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys [J].
Carmichael, ST ;
Price, JL .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 363 (04) :615-641
[9]   Anterior cingulate cortex, error detection, and the online monitoring of performance [J].
Carter, CS ;
Braver, TS ;
Barch, DM ;
Botvinick, MM ;
Noll, D ;
Cohen, JD .
SCIENCE, 1998, 280 (5364) :747-749
[10]   A functional anatomy of anticipatory anxiety [J].
Chua, P ;
Krams, M ;
Toni, I ;
Passingham, R ;
Dolan, R .
NEUROIMAGE, 1999, 9 (06) :563-571