A yeast two-hybrid system reconstituting substrate recognition of the von Hippel-Lindau tumor suppressor protein

被引:14
作者
Bex, Claudia [1 ]
Knauth, Katja [1 ]
Dambacher, Silvia [1 ]
Buchberger, Alexander [1 ]
机构
[1] Max Planck Inst Biochem, Dept Mol Cell Biol, D-82152 Martinsried, Germany
关键词
HYPOXIA-INDUCIBLE FACTOR; RENAL-CELL CARCINOMA; UBIQUITIN LIGASES; DIRECT BINDING; SOCS PROTEINS; REGULATE HIF; FACTOR-ALPHA; SH2; DOMAIN; DISEASE; HYDROXYLATION;
D O I
10.1093/nar/gkm932
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The von Hippel-Lindau tumor suppressor protein (pVHL) is inactivated in the hereditary cancer syndrome von Hippel-Lindau disease and in the majority of sporadic renal carcinomas. pVHL is the substrate-binding subunit of the CBCVHL ubiquitin ligase complex that negatively regulates cell growth by promoting the degradation of hypoxia-inducible transcription factor subunits (HIF1/2 alpha). Proteomics-based identification of novel pVHL substrates is hampered by their short half-life and low abundancy in mammalian cells. The usefulness of yeast two-hybrid (Y2H) approaches, on the other hand, has been limited by the failure of pVHL to adopt its native structure and by the absence of prolylhydroxylase activity critical for pVHL substrate recognition. Therefore, we modified the Y2H system to faithfully reconstitute the physical interaction between pVHL and its substrates. Our approach relies on the coexpression of pVHL with the cofactors Elongin B and Elongin C and with HIF1/2 alpha prolylhydroxylases. In a proof-of-principle Y2H screen, we identified the known substrates HIF1/2 alpha and new candidate substrates including diacylglycerol kinase iota, demonstrating that our strategy allows detection of stable interactions between pVHL and otherwise elusive cellular targets. Additional future applications may include structure/function analyses of pVHL-HIF1/2 alpha binding and screens for therapeutically relevant compounds that either stabilize or disrupt this interaction.
引用
收藏
页数:9
相关论文
共 55 条
[1]   The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immuneresponse [J].
Alexander, WS ;
Hilton, DJ .
ANNUAL REVIEW OF IMMUNOLOGY, 2004, 22 :503-529
[2]   The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability [J].
Babon, JJ ;
McManus, EJ ;
Yao, SG ;
DeSouza, DP ;
Mielke, LA ;
Sprigg, NS ;
Willson, TA ;
Hilton, DJ ;
Nicola, NA ;
Baca, M ;
Nicholson, SE ;
Norton, RS .
MOLECULAR CELL, 2006, 22 (02) :205-216
[3]  
BARTEL PL, 1995, METHOD ENZYMOL, V254, P241
[4]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[5]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[6]   High-throughput screening for protein-protein interactions using two-hybrid assay [J].
Cagney, G ;
Uetz, P ;
Fields, S .
APPLICATIONS OF CHIMERIC GENES AND HYBRID PROTEINS, PT C, 2000, 328 :3-14
[7]   Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease [J].
Clifford, SC ;
Cockman, ME ;
Smallwood, AC ;
Mole, DR ;
Woodward, ER ;
Maxwell, PH ;
Ratcliffe, PJ ;
Maher, ER .
HUMAN MOLECULAR GENETICS, 2001, 10 (10) :1029-1038
[8]   Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein [J].
Corn, PG ;
McDonald, ER ;
Herman, JG ;
El-Deiry, WS .
NATURE GENETICS, 2003, 35 (03) :229-237
[9]   The cloning and characterization of a novel human diacylglycerol kinase, DGKι [J].
Ding, L ;
Traer, E ;
McIntyre, TM ;
Zimmerman, GA ;
Prescott, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32746-32752
[10]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54