Polar effects control hydrogen-abstraction reactions of charged, substituted phenyl radicals

被引:57
作者
Heidbrink, JL [1 ]
Ramírez-Arizmendi, LE [1 ]
Thoen, KK [1 ]
Guler, L [1 ]
Kenttämaa, HI [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
关键词
D O I
10.1021/jp0103676
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate of hydrogen atom abstraction from tributyltin hydride, benzeneselenol, thiophenol, and tetrahydrofuran was measured in the gas phase for charged phenyl radicals with different neutral substituents at the meta- or ortho-position. A charged pyridinium substituent (meta or para) allowed the manipulation of the radicals in the Fourier transform ion cyclotron resonance mass spectrometer that was used to carry out the experiments. All the reaction rates were found to be similarly affected by substituents on the radical: meta, H < Br similar to Cl < CN (most reactive); ortho, H < CF3 similar to Cl similar to F. The experimental observations parallel the transition-state energies calculated for hydrogen abstraction from methanol. However, the calculated reaction exothermicities do not correlate with the reactivity trends. Instead, a correlation exists between the reactivity and electron affinity of the radicals. We conclude that the electron-withdrawing substituents studied here lower the reaction barrier by increasing the polarity of the transition state, without an associated increase in reaction exothermicity. The increase in the electron affinity (AEA) of the radical caused by a given substituent provides a sensitive probe for the substituent's barrier-lowering effect (in the few cases studied in detail, the barrier is lowered by about 10% of Delta EA(v)). Another way to lower the barrier involves lowering the ionization energy of the substrate. Indeed, all the radicals follow the reactivity trend of thiophenol > 4-fluorothiophenol > pentafluorothiophenol. This trend reflects the decreasing ionization energies of the three substrates rather than the decreasing reaction exothermicities or increasing homolytic bond-dissociation energies (4-fluorothiophenol > thiophenol > pentafluorothiophenol). Apparently, the polar control overrides the enthalpic control in this case. The results reported for radicals with different distances between the radical site and the charged group suggest that similar substituent effects are expected for neutral phenyl radicals, and that the hydrogen abstraction ability of heteroaromatic radicals is likely to be tunable by pH.
引用
收藏
页码:7875 / 7884
页数:10
相关论文
共 60 条
[1]   DYNAMICS AND REACTION-MECHANISMS OF ORGANIC IONS IN THE GAS-PHASE [J].
BARFKNECHT, AT ;
DODD, JA ;
SALOMON, KE ;
TUMAS, W ;
BRAUMAN, JI .
PURE AND APPLIED CHEMISTRY, 1984, 56 (12) :1809-1818
[2]   EMPIRICAL-METHODS FOR DETERMINATION OF IONIZATION GAUGE RELATIVE SENSITIVITIES FOR DIFFERENT GASES [J].
BARTMESS, JE ;
GEORGIADIS, RM .
VACUUM, 1983, 33 (03) :149-153
[3]   SINGLE-STRAND AND DOUBLE-STRAND BREAK FORMATION IN DOUBLE-STRANDED DNA UPON NANOSECOND LASER-INDUCED PHOTOIONIZATION [J].
BOTHE, E ;
GORNER, H ;
OPITZ, J ;
SCHULTEFROHLINDE, D ;
SIDDIQI, A ;
WALA, M .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1990, 52 (05) :949-959
[4]   PULSED VALVE ADDITION OF COLLISION AND REAGENT GASES IN FOURIER-TRANSFORM MASS-SPECTROMETRY [J].
CARLIN, TJ ;
FREISER, BS .
ANALYTICAL CHEMISTRY, 1983, 55 (03) :571-574
[5]   PROOXIDANT STATES AND TUMOR PROMOTION [J].
CERUTTI, PA .
SCIENCE, 1985, 227 (4685) :375-381
[6]   PHASE-MODULATED STORED WAVE-FORM INVERSE FOURIER-TRANSFORM EXCITATION FOR TRAPPED ION MASS-SPECTROMETRY [J].
CHEN, L ;
WANG, TCL ;
RICCA, TL ;
MARSHALL, AG .
ANALYTICAL CHEMISTRY, 1987, 59 (03) :449-454
[7]   Testing frontier orbital control: Kinetics of OH with ethane, propane, and cyclopropane from 180 to 360K [J].
Clarke, JS ;
Kroll, JH ;
Donahue, NM ;
Anderson, JG .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (48) :9847-9857
[8]   THE C-H BOND-ENERGY OF BENZENE [J].
DAVICO, GE ;
BIERBAUM, VM ;
DEPUY, CH ;
ELLISON, GB ;
SQUIRES, RR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (09) :2590-2599
[9]  
Dean A.M., 1994, 208 NAT M AM CHEM SO
[10]   Predicting radical-molecule barrier heights: The role of the ionic surface [J].
Donahue, NM ;
Clarke, JS ;
Anderson, JG .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (22) :3923-3933