Fluctuations in stationary nonequilibrium states of irreversible processes

被引:238
作者
Bertini, L
De Sole, A
Gabrielli, D
Jona-Lasinio, G
Landim, C
机构
[1] Univ Rome La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[4] Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[5] Univ Rome La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy
[6] Inst Matemat Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[7] Univ Rouen, CNRS, UPRESA 6085, F-76128 Mt St Aignan, France
关键词
D O I
10.1103/PhysRevLett.87.040601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a dynamical fluctuation theory for stationary nonequilibrium states: (SNS) which covers situations in a nonlinear hydrodynamic regime and is verified explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Our results include the modification of the Onsager-Machiup theory in the SNS, a general Hamilton-Jacobi equation for the macroscopic entropy and a nonequilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems.
引用
收藏
页码:40601 / 1
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 1999, SCALING LIMITS INTER, DOI DOI 10.1007/978-3-662-03752-2
[2]  
BERTINI L, IN PRESS
[3]   A REMARK ON THE HYDRODYNAMICS OF THE ZERO-RANGE PROCESSES [J].
DEMASI, A ;
FERRARI, P .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) :81-87
[4]   LARGE DEVIATIONS FROM A HYDRODYNAMIC SCALING LIMIT [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :243-270
[5]   Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures [J].
Eckmann, JP ;
Pillet, CA ;
Rey-Bellet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :657-697
[6]   DISSIPATION AND LARGE THERMODYNAMIC FLUCTUATIONS [J].
EYINK, GL .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) :533-572
[7]  
FELLER W, 1966, INTRO PROBABILITY TH, V2, pCH10
[8]  
FREIDLIN M. I., 2012, Random Perturbations of Dynamical Systems, Grundlehren der mathematischen Wissenschaften, V3rd
[9]   Onsager reciprocity relations without microscopic reversibility [J].
Gabrielli, D ;
JonaLasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1202-1205
[10]   Onsager symmetry from microscopic TP invariance [J].
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (3-4) :639-652