Exact stable pulses in asymmetric linearly coupled Ginzburg-Landau equations

被引:68
作者
Atai, J [1 ]
Malomed, BA
机构
[1] Univ Sydney, Dept Elect Engn, Sydney, NSW 2006, Australia
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/S0375-9601(98)00505-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We put forward the first physical model based on coupled Ginzburg-Landau equations that supports exact stable pulse solutions. The model describes a doped twin-core optical fiber with dispersive losses, dispersion, and cubic nonlinearity in one component, and pure losses in the other. The exact stable pulses are found for the cases of the anomalous, normal, and zero dispersion. Necessary conditions for stability of the pulses are obtained analytically, and a full stability analysis is performed numerically. We find nontrivial stability borders on the model's phase planes that do not follow from elementary theorems of the bifurcation theory. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 1980, ELEMENTARY STABILITY
[2]  
ATAI J, IN PRESS PHYS LETT A
[3]  
ATAL J, 1996, PHYS REV E, V54, P4371
[4]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[5]   TIME-DOMAIN SOLITON FILTER BASED ON A SEMIDISSIPATIVE DUAL-CORE FIBER [J].
CHU, PL ;
PENG, GD ;
MALOMED, BA ;
HATAMIHANZA, H ;
SKINNER, IM .
OPTICS LETTERS, 1995, 20 (10) :1092-1094
[6]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[7]   DISPERSIVE CHAOS [J].
GLAZIER, JA ;
KOLODNER, P ;
WILLIAMS, H .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (5-6) :945-960
[8]   FRONTS VS SOLITARY WAVES IN NONEQUILIBRIUM SYSTEMS [J].
HAKIM, V ;
JAKOBSEN, P ;
POMEAU, Y .
EUROPHYSICS LETTERS, 1990, 11 (01) :19-24
[9]  
Hasegawa A., 1995, Solitons in Optical Communications
[10]   NONLINEAR RESPONSE OF A MARGINALLY UNSTABLE PLANE PARALLEL FLOW TO A 2-DIMENSIONAL DISTURBANCE [J].
HOCKING, LM ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 326 (1566) :289-+