Unsupervised curve clustering using B-splines

被引:248
作者
Abraham, C
Cornillon, PA
Matzner-Lober, E
Molinari, N
机构
[1] Univ Rennes 2, UFR Sci Sociales, F-35043 Rennes, France
[2] INRA, ENSA, F-34060 Montpellier, France
[3] Univ Montpellier 1, F-34006 Montpellier, France
关键词
B-splines; clustering; epi-convergence; functional data; k-means; partitioning;
D O I
10.1111/1467-9469.00350
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data in many different fields come to practitioners through a process naturally described as functional. Although data are gathered as finite vector and may contain measurement errors, the functional form have to be taken into account. We propose a clustering procedure of such data emphasizing the functional nature of the objects. The new clustering method consists of two stages: fitting the functional data by B-sptines and partitioning the estimated model coefficients using a k-means algorithm. Strong consistency of the clustering method is proved and a real-world example from food industry is given.
引用
收藏
页码:581 / 595
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 1997, SPRINGER SERIES STAT
[2]  
Bock H. H., 1998, ADV DATA SCI CLASSIF, P265
[3]   ON POLYA FREQUENCY FUNCTIONS .4. FUNDAMENTAL SPLINE FUNCTIONS AND THEIR LIMITS [J].
CURRY, HB ;
SCHOENBERG, IJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1966, 17 :71-+
[4]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[5]  
DIDAY E, 1983, ELEMENTS ANAL DONNES
[6]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
[7]  
Hartigan J. A., 1975, CLUSTERING ALGORITHM
[8]  
LEMAIRE J, 1983, STAT ANAL DONNEES, V8, P41
[9]  
MULLER C, 1996, P 29 JOURN STAT ASU
[10]   STRONG CONSISTENCY OF K-MEANS CLUSTERING [J].
POLLARD, D .
ANNALS OF STATISTICS, 1981, 9 (01) :135-140