Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1

被引:82
作者
Reiland, J
Ott, VL
Lebakken, CS
Yeaman, C
McCarthy, J
Rapraeger, AC
机构
[1] UNIV WISCONSIN, DEPT PATHOL & LAB MED, MADISON, WI 53706 USA
[2] UNIV WISCONSIN, GRAD PROGRAM CELLULAR & MOL BIOL, MADISON, WI 53706 USA
[3] UNIV MINNESOTA, DEPT PATHOL & LAB MED, MINNEAPOLIS, MN 55455 USA
关键词
D O I
10.1042/bj3190039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Syndecan-1 is a transmembrane haparan sulphate proteoglycan that binds extracellular matrices and growth factors, making it a candidate to act between these regulatory molecules and intracellular signalling pathways. It has a highly conserved transmembrane/cytoplasmic domain that contains four conserved tyrosines. One of these is in a consensus sequence for tyrosine kinase phosphorylation. As an initial step to investigating whether or not phosphorylation of these tyrosines is part of a signal-transduction pathway, we have monitored the tyrosine phosphorylation of syndecan-1 by cytoplasmic tyrosine kinases in intact cells. Tyrosine phosphorylation of syndecan-1 is observed when NMuMG cells are treated with sodium orthovanadate or pervanadate, which have been shown to activate intracellular tyrosine kinases, Initial studies with sodium orthovanadate demonstrate a slow accumulation of phosphotyrosine on syndecan-1 over the course of several hours. Pervanadate, a more effective inhibitor of phosphatases, allows detection of phosphotyrosine on syndecan-1 within 5 min, with peak phosphorylation seen by 15 min. Concurrently, in a second process activated by pervanadate, syndecan-1 ectodomain is cleaved and released into the culture medium. Two phosphorylated fragments of syndecan-1 of apparent sizes 6 and 8 kDa remain with the cell after shedding of the ectodomain. The 8 kDa size class appears to be a highly phosphorylated form of the 6 kDa product, as it disappears if samples are dephosphorylated. These fragments contain the C-terminus of syndecan-1 and also retain at least a portion of the transmembrane domain, suggesting that they are produced by a cell surface cleavage event. Thus pervanadate treatment of cells results in two effects of syndecan-1: (i) phosphorylation of one or more of its tyrosines via the action of a cytoplasmic kinase(s) and (ii) cleavage and release of the ectodomain into the medium, producing a C-terminal fragment containing the transmembrane/cytoplasmic domain.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 56 条
[1]   LOSS OF EPITHELIAL DIFFERENTIATION AND GAIN OF INVASIVENESS CORRELATES WITH TYROSINE PHOSPHORYLATION OF THE E-CADHERIN BETA-CATENIN COMPLEX IN CELLS TRANSFORMED WITH A TEMPERATURE-SENSITIVE V-SRC GENE [J].
BEHRENS, J ;
VAKAET, L ;
FRIIS, R ;
WINTERHAGER, E ;
VANROY, F ;
MAREEL, MM ;
BIRCHMEIER, W .
JOURNAL OF CELL BIOLOGY, 1993, 120 (03) :757-766
[2]   BIOLOGY OF THE SYNDECANS - A FAMILY OF TRANSMEMBRANE HEPARAN-SULFATE PROTEOGLYCANS [J].
BERNFIELD, M ;
KOKENYESI, R ;
KATO, M ;
HINKES, MT ;
SPRING, J ;
GALLO, RL ;
LOSE, EJ .
ANNUAL REVIEW OF CELL BIOLOGY, 1992, 8 :365-393
[3]   ACTIVATION OF HUMAN PLATELETS BY PEROXOVANADATE IS ASSOCIATED WITH TYROSINE PHOSPHORYLATION OF PHOSPHOLIPASE C-GAMMA AND FORMATION OF INOSITOL PHOSPHATES [J].
BLAKE, RA ;
WALKER, TR ;
WATSON, SP .
BIOCHEMICAL JOURNAL, 1993, 290 :471-475
[4]   TYROSINE PHOSPHORYLATION OF PAXILLIN AND PP125(FAK) ACCOMPANIES CELL-ADHESION TO EXTRACELLULAR-MATRIX - A ROLE IN CYTOSKELETAL ASSEMBLY [J].
BURRIDGE, K ;
TURNER, CE ;
ROMER, LH .
JOURNAL OF CELL BIOLOGY, 1992, 119 (04) :893-903
[5]   PROTEIN-PHOSPHORYLATION REGULATES SECRETION OF ALZHEIMER-BETA-A4 AMYLOID PRECURSOR PROTEIN [J].
CAPORASO, GL ;
GANDY, SE ;
BUXBAUM, JD ;
RAMABHADRAN, TV ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (07) :3055-3059
[6]   AGGREGATION-INDUCED ASSOCIATION OF SYNDECAN-1 WITH MICROFILAMENTS MEDIATED BY THE CYTOPLASMIC DOMAIN [J].
CAREY, DJ ;
STAHL, RC ;
TUCKER, B ;
BENDT, KA ;
CIZMECISMITH, G .
EXPERIMENTAL CELL RESEARCH, 1994, 214 (01) :12-21
[7]  
CROWE PD, 1993, J IMMUNOL, V151, P6882
[9]   LIGAND AND PROTEIN KINASE-C DOWNMODULATE THE COLONY-STIMULATING FACTOR-I RECEPTOR BY INDEPENDENT MECHANISMS [J].
DOWNING, JR ;
ROUSSEL, MF ;
SHERR, CJ .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (07) :2890-2896
[10]  
ELENIUS K, 1992, J BIOL CHEM, V267, P6435