Phosphorylation of the Nicotiana benthamiana WRKY8 Transcription Factor by MAPK Functions in the Defense Response

被引:201
作者
Ishihama, Nobuaki [1 ]
Yamada, Reiko [1 ]
Yoshioka, Miki [1 ]
Katou, Shinpei [2 ]
Yoshioka, Hirofumi [1 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Lab Def Plant Pathogen Interact, Nagoya, Aichi 4648601, Japan
[2] Shinshu Univ, Int Young Researchers Empowerment Ctr, Nagano 3994598, Japan
关键词
ACTIVATED PROTEIN-KINASE; GENE-EXPRESSION; CELL-DEATH; PHYTOPHTHORA-INFESTANS; MEDIATED RESISTANCE; DISEASE-RESISTANCE; BASAL RESISTANCE; NITRIC-OXIDE; PLANT; TOBACCO;
D O I
10.1105/tpc.110.081794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitogen-activated protein kinase (MAPK) cascades have pivotal roles in plant innate immunity. However, downstream signaling of plant defense-related MAPKs is not well understood. Here, we provide evidence that the Nicotiana benthamiana WRKY8 transcription factor is a physiological substrate of SIPK, NTF4, and WIPK. Clustered Pro-directed Ser residues (SP cluster), which are conserved in group I WRKY proteins, in the N-terminal region of WRKY8 were phosphorylated by these MAPKs in vitro. Antiphosphopeptide antibodies indicated that Ser residues in the SP cluster of WRKY8 are phosphorylated by SIPK, NTF4, and WIPK in vivo. The interaction of WRKY8 with MAPKs depended on its D domain, which is a MAPK-interacting motif, and this interaction was required for effective phosphorylation of WRKY8 in plants. Phosphorylation of WRKY8 increased its DNA binding activity to the cognate W-box sequence. The phospho-mimicking mutant of WRKY8 showed higher transactivation activity, and its ectopic expression induced defense-related genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 and NADP-malic enzyme. By contrast, silencing of WRKY8 decreased the expression of defense-related genes and increased disease susceptibility to the pathogens Phytophthora infestans and Colletotrichum orbiculare. Thus, MAPK-mediated phosphorylation of WRKY8 has an important role in the defense response through activation of downstream genes.
引用
收藏
页码:1153 / 1170
页数:18
相关论文
共 67 条
[1]   The MAP kinase substrate MKS1 is a regulator of plant defense responses [J].
Andreasson, E ;
Jenkins, T ;
Brodersen, P ;
Thorgrimsen, S ;
Petersen, NHT ;
Zhu, SJ ;
Qiu, JL ;
Micheelsen, P ;
Rocher, A ;
Petersen, M ;
Newman, MA ;
Nielsen, HB ;
Hirt, H ;
Somssich, I ;
Mattsson, O ;
Mundy, J .
EMBO JOURNAL, 2005, 24 (14) :2579-2589
[2]   MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana [J].
Asai, Shuta ;
Ohta, Kohji ;
Yoshioka, Hirofumi .
PLANT CELL, 2008, 20 (05) :1390-1406
[3]  
Asai S, 2010, PLANT J, V62, P911, DOI [10.1111/j.1365-313X.2010.04206.x, 10.1111/j.0960-7412.2010.04206.x]
[4]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[5]   Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling [J].
Bethke, Gerit ;
Unthan, Tino ;
Uhrig, Joachim F. ;
Poeschl, Yvonne ;
Gust, Andrea A. ;
Scheel, Dierk ;
Lee, Justin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (19) :8067-8072
[6]   Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice [J].
Chuio, Tetsuya ;
Takai, Ryota ;
Akimoto-Tomiyama, Chiharu ;
Ando, Sugihiro ;
Minami, Eiichi ;
Nagamura, Yoshiaki ;
Kaku, Hanae ;
Shibuya, Naoto ;
Yasuda, Michiko ;
Nakashita, Hideo ;
Umemura, Kenji ;
Okada, Atsushi ;
Okada, Kazunori ;
Nojiri, Hideaki ;
Yamane, Hisakazu .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2007, 1769 (7-8) :497-505
[7]   Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function [J].
Ciolkowski, Ingo ;
Wanke, Dierk ;
Birkenbihl, Rainer P. ;
Somssich, Imre E. .
PLANT MOLECULAR BIOLOGY, 2008, 68 (1-2) :81-92
[8]   MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease [J].
del Pozo, O ;
Pedley, KF ;
Martin, GB .
EMBO JOURNAL, 2004, 23 (15) :3072-3082
[9]   Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J].
Diatchenko, L ;
Lau, YFC ;
Campbell, AP ;
Chenchik, A ;
Moqadam, F ;
Huang, B ;
Lukyanov, S ;
Lukyanov, K ;
Gurskaya, N ;
Sverdlov, ED ;
Siebert, PD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :6025-6030
[10]   The WRKY superfamily of plant transcription factors [J].
Eulgem, T ;
Rushton, PJ ;
Robatzek, S ;
Somssich, IE .
TRENDS IN PLANT SCIENCE, 2000, 5 (05) :199-206