Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley

被引:214
作者
La Rota, M
Kantety, RV
Yu, JK
Sorrells, ME
机构
[1] Cornell Univ, Dept Plant Breeding & Genet, Ithaca, NY 14853 USA
[2] Alabama A&M Univ, Dept Plant & Soil Sci, Normal, AL 35762 USA
关键词
D O I
10.1186/1471-2164-6-23
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Earlier comparative maps between the genomes of rice ( Oryza sativa L.), barley ( Hordeum vulgare L.) and wheat ( Triticum aestivum L.) were linkage maps based on cDNA-RFLP markers. The low number of polymorphic RFLP markers has limited the development of dense genetic maps in wheat and the number of available anchor points in comparative maps. Higher density comparative maps using PCR-based anchor markers are necessary to better estimate the conservation of colinearity among cereal genomes. The purposes of this study were to characterize the proportion of transcribed DNA sequences containing simple sequence repeats (SSR or microsatellites) by length and motif for wheat, barley and rice and to determine in-silico rice genome locations for primer sets developed for wheat and barley Expressed Sequence Tags. Results: The proportions of SSR types ( di-, tri-, tetra-, and penta- nucleotide repeats) and motifs varied with the length of the SSRs within and among the three species, with trinucleotide SSRs being the most frequent. Distributions of genomic microsatellites (gSSRs), EST-derived microsatellites (EST-SSRs), and transcribed regions in the contiguous sequence of rice chromosome 1 were highly correlated. More than 13,000 primer pairs were developed for use by the cereal research community as potential markers in wheat, barley and rice. Conclusion: Trinucleotide SSRs were the most common type in each of the species; however, the relative proportions of SSR types and motifs differed among rice, wheat, and barley. Genomic microsatellites were found to be primarily located in gene-rich regions of the rice genome. Microsatellite markers derived from the use of non-redundant EST-SSRs are an economic and efficient alternative to RFLP for comparative mapping in cereals.
引用
收藏
页数:12
相关论文
共 35 条
[1]   HOMOEOLOGOUS RELATIONSHIPS OF RICE, WHEAT AND MAIZE CHROMOSOMES [J].
AHN, S ;
ANDERSON, JA ;
SORRELLS, ME ;
TANKSLEY, SD .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :483-490
[2]   Micron, a microsatellite-targeting transposable element in the rice genome [J].
Akagi, H ;
Yokozeki, Y ;
Inagaki, A ;
Mori, K ;
Fujimura, T .
MOLECULAR GENETICS AND GENOMICS, 2001, 266 (03) :471-480
[3]   Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.) [J].
Bao, JS ;
Corke, H ;
Sun, M .
THEORETICAL AND APPLIED GENETICS, 2002, 105 (6-7) :898-905
[4]  
Benson DA, 2003, NUCLEIC ACIDS RES, V31, P23, DOI 10.1093/nar/gkg057
[5]   Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties [J].
Bligh, HFJ ;
Larkin, PD ;
Roach, PS ;
Jones, CA ;
Fu, HY ;
Park, WD .
PLANT MOLECULAR BIOLOGY, 1998, 38 (03) :407-415
[6]   Sequence divergence of rice microsatellites in Oryza and other plant species [J].
Chen, X ;
Cho, YG ;
McCouch, SR .
MOLECULAR GENETICS AND GENOMICS, 2002, 268 (03) :331-343
[7]   Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) [J].
Cho, YG ;
Ishii, T ;
Temnykh, S ;
Chen, X ;
Lipovich, L ;
McCouch, SR ;
Park, WD ;
Ayres, N ;
Cartinhour, S .
THEORETICAL AND APPLIED GENETICS, 2000, 100 (05) :713-722
[8]   Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile X syndrome [J].
Coffee, B ;
Zhang, FP ;
Ceman, S ;
Warren, ST ;
Reines, D .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) :923-932
[9]   Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum [J].
Cordeiro, GM ;
Casu, R ;
McIntyre, CL ;
Manners, JM ;
Henry, RJ .
PLANT SCIENCE, 2001, 160 (06) :1115-1123
[10]   Fourteen and counting: unraveling trinucleotide repeat diseases [J].
Cummings, CJ ;
Zoghbi, HY .
HUMAN MOLECULAR GENETICS, 2000, 9 (06) :909-916