A moving mesh finite element method for the solution of two-dimensional Stefan problems

被引:107
作者
Beckett, G [1 ]
Mackenzie, JA [1 ]
Robertson, ML [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
enthalpy; phase change; equidistribution; Stefan problem; moving meshes; adaptive method; moving finite elements;
D O I
10.1006/jcph.2001.6721
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An r-adaptive moving mesh method is developed for the numerical solution of an enthalpy formulation of two-dimensional heat conduction problems with a phase change. The grid is obtained from a global mapping of the physical to the computational domain which is designed to cluster mesh points around the interface between the two phases of the material. The enthalpy equation is discretised using a semiimplicit Galerkin finite element method using linear basis functions. The moving finite element method is applied to problems where the phase front is cusp shaped and where the interface changes topology. (C) 2001 Academic Press.
引用
收藏
页码:500 / 518
页数:19
相关论文
共 28 条
[1]   ADAPTIVE ZONING FOR SINGULAR PROBLEMS IN 2 DIMENSIONS [J].
BRACKBILL, JU ;
SALTZMAN, JS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (03) :342-368
[2]   AN ADAPTIVE-GRID WITH DIRECTIONAL CONTROL [J].
BRACKBILL, JU .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :38-50
[3]   HEAT-TRANSFER WITH MELTING OR FREEZING IN A WEDGE [J].
BUDHIA, H ;
KREITH, F .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1973, 16 (01) :195-211
[4]  
CAO W, IN PRESS SIAM J SCI
[5]   An r-adaptive finite element method based upon moving mesh PDEs [J].
Cao, WM ;
Huang, WZ ;
Russell, RD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :221-244
[6]  
CARLSON N, 1998, SIAM J SCI COMPUT, V19, P798
[7]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[8]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[9]  
Crank J., 1984, Free and Moving Boundary Problems
[10]   A TEMPERATURE-BASED FINITE-ELEMENT SOLUTION FOR PHASE-CHANGE PROBLEMS [J].
CRIVELLI, LA ;
IDELSOHN, SR .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (01) :99-119