Ras diffusion is sensitive to plasma membrane viscosity

被引:102
作者
Goodwin, JS
Drake, KR
Remmert, CL
Kenworthy, AK
机构
[1] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Dept Cell & Dev Biol, Nashville, TN 37232 USA
关键词
D O I
10.1529/biophysj.104.055640
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner lea. et of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.
引用
收藏
页码:1398 / 1410
页数:13
相关论文
共 74 条
[1]   Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and insigs [J].
Adams, CM ;
Reitz, J ;
De Brabander, JK ;
Feramisco, JD ;
Li, L ;
Brown, MS ;
Goldstein, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (50) :52772-52780
[2]   LATERAL DIFFUSION IN THE LIQUID-PHASES OF DIMYRISTOYLPHOSPHATIDYLCHOLINE CHOLESTEROL LIPID BILAYERS - A FREE-VOLUME ANALYSIS [J].
ALMEIDA, PFF ;
VAZ, WLC ;
THOMPSON, TE .
BIOCHEMISTRY, 1992, 31 (29) :6739-6747
[3]   PERCOLATION AND DIFFUSION IN 3-COMPONENT LIPID BILAYERS - EFFECT OF CHOLESTEROL ON AN EQUIMOLAR MIXTURE OF 2 PHOSPHATIDYLCHOLINES [J].
ALMEIDA, PFF ;
VAZ, WLC ;
THOMPSON, TE .
BIOPHYSICAL JOURNAL, 1993, 64 (02) :399-412
[4]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[5]   CARBOCYANINE DYE ORIENTATION IN RED-CELL MEMBRANE STUDIED BY MICROSCOPIC FLUORESCENCE POLARIZATION [J].
AXELROD, D .
BIOPHYSICAL JOURNAL, 1979, 26 (03) :557-573
[6]   Fluorescence correlation spectroscopy relates rafts in model and native membranes [J].
Bacia, K ;
Scherfeld, D ;
Kahya, N ;
Schwille, P .
BIOPHYSICAL JOURNAL, 2004, 87 (02) :1034-1043
[7]   LIPID DIFFUSIBILITY IN THE INTACT ERYTHROCYTE-MEMBRANE [J].
BLOOM, JA ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1983, 42 (03) :295-305
[8]   Cholesterol depletion increases membrane stiffness of aortic endothelial cells [J].
Byfield, FJ ;
Aranda-Espinoza, H ;
Romanenko, VG ;
Rothblat, GH ;
Levitan, I .
BIOPHYSICAL JOURNAL, 2004, 87 (05) :3336-3343
[9]   PROTEIN LIPIDATION IN CELL SIGNALING [J].
CASEY, PJ .
SCIENCE, 1995, 268 (5208) :221-225
[10]   PHOSPHOLIPID TRANSMEMBRANE DOMAINS AND LATERAL DIFFUSION IN FIBROBLASTS [J].
CHAHINE, JMEH ;
CRIBIER, S ;
DEVAUX, PF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :447-451