Upper bounds for the reaction front in d-dimensional turbulent flow

被引:5
作者
Fedotov, S
机构
[1] Department of Mathematical Physics, Ural State University, Yekaterinburg
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 20期
关键词
D O I
10.1088/0305-4470/29/20/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an asymptotic method that yields analytic results for the upper bounds for the ensemble averaged reaction front position and speed in a d-dimensional high Reynolds number turbulent flow. The chemical reaction is assumed to be of Kolmogorov-Petrovskii-Piskunov type and the velocity is an incompressible Gaussian random field. In addition to the general formalism, some examples are worked out in detail.
引用
收藏
页码:L517 / L521
页数:5
相关论文
共 15 条
[1]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT .2. FRACTAL INTERFACES, NON-GAUSSIAN STATISTICS AND THE SWEEPING EFFECT [J].
AVELLANEDA, M ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :139-204
[2]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :381-429
[3]   EFFECTIVE GEOMETRIC FRONT DYNAMICS FOR PREMIXED TURBULENT COMBUSTION WITH SEPARATED VELOCITY SCALES [J].
EMBID, PF ;
MAJDA, AJ ;
SOUGANIDIS, PE .
COMBUSTION SCIENCE AND TECHNOLOGY, 1994, 103 (1-6) :85-115
[4]   THE PROBLEM OF FLAME PROPAGATION IN A RANDOM VELOCITY-FIELD - WEAK TURBULENCE LIMIT [J].
FEDOTOV, SP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (07) :2057-2064
[5]   RENORMALIZATION FOR REACTION-FRONT PROPAGATION IN A FULLY-DEVELOPED TURBULENT SHEAR-FLOW [J].
FEDOTOV, SP .
PHYSICAL REVIEW E, 1995, 52 (04) :3835-3839
[6]   REACTION FRONT PROPAGATION IN A TURBULENT-FLOW [J].
FEDOTOV, SP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17) :L461-L468
[7]  
FEDOTOV SP, 1996, UNPUB PHYS REV E
[8]   LIMIT-THEOREMS FOR LARGE DEVIATIONS AND REACTION-DIFFUSION EQUATIONS [J].
FREIDLIN, M .
ANNALS OF PROBABILITY, 1985, 13 (03) :639-675
[9]  
FREIDLIN M, 1992, LECT NOTES MATH, V1527
[10]   WEAK NOISE LIMIT OF FOKKER-PLANCK MODELS AND NONDIFFERENTIABLE POTENTIALS FOR DISSIPATIVE DYNAMICAL-SYSTEMS [J].
GRAHAM, R ;
TEL, T .
PHYSICAL REVIEW A, 1985, 31 (02) :1109-1122