The discrete 2-center problem

被引:30
作者
Agarwal, PK
Sharir, M
Welzl, E
机构
[1] Duke Univ, Dept Comp Sci, Ctr Geometr Comp, Durham, NC 27708 USA
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] ETH Zurich, Inst Theoret Informat, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/PL00009387
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for computing the discrete 2-center of a set P of n points in the plane; that is, computing two congruent disks of smallest possible radius, centered at two points of P, whose union covers P. Our algorithm runs in time O(n(4/3) log(5) n).
引用
收藏
页码:287 / 305
页数:19
相关论文
共 15 条
[1]   ON STABBING LINES FOR CONVEX POLYHEDRA IN 3D [J].
AGARWAL, PK .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (04) :177-189
[2]   PLANAR GEOMETRIC LOCATION-PROBLEMS [J].
AGARWAL, PK ;
SHARIR, M .
ALGORITHMICA, 1994, 11 (02) :185-195
[3]   SELECTING DISTANCES IN THE PLANE [J].
AGARWAL, PK ;
ARONOV, B ;
SHARIR, M ;
SURI, S .
ALGORITHMICA, 1993, 9 (05) :495-514
[4]  
[Anonymous], SIAM J COMPUT
[5]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[6]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[7]  
Eppstein D, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P131
[8]   FINDING TAILORED PARTITIONS [J].
HERSHBERGER, J ;
SURI, S .
JOURNAL OF ALGORITHMS, 1991, 12 (03) :431-463
[9]  
Jaromczyk J. W., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P303, DOI 10.1145/177424.178038
[10]   An expander-based approach to geometric optimization [J].
Katz, MJ ;
Sharir, M .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1384-1408