Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications

被引:55
作者
Bae, Byungchan [1 ]
Miyatake, Kenji [1 ]
Watanabe, Masahiro [1 ]
机构
[1] Yamanashi Univ, Clean Energy Res Ctr, Kofu, Yamanashi 4008510, Japan
关键词
poly(arylene ether sulfone); ionomers; fuel cells; proton conduction;
D O I
10.1016/j.memsci.2007.10.037
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A series of sulfonated poly(arylene ether sulfone)s (SPEs) containing fluorenyl groups as bulky components were synthesized and characterized for fuel cell applications. Introduction of disodium 3,3'-disulfo-4,4'-difluorophenyl sulfone (SFPS) monomer gave ionomers with high acidity and accordingly high proton conductivity as well as high proton diffusion coefficient (D,) at low humidity. The membrane of SPE60 (where the number denotes mole percentage of the component containing sulfonic acid groups; IEC (ion exchange capacity) = 1.68 mequiv./g) exhibited high proton conductivity of 4.6 x 10(-3) S/cm at 40% RH and 80 degrees C, which is one order of magnitude higher than that (6 x 10(-4) S/cm) of our previous SPE (SPE-1, IEC = 1.58 mequiv./g). D, of SPE60 membrane was ca. 4 times higher than that of the SPE-1 membrane at low water volume fraction. SPE membranes showed good oxidative and hydrolytic stability as well as favorable thermal and mechanical properties. Small-angle X-ray scattering analyses showed that the phase separation of SPE membranes was much less developed than that of the perfluorinated Nafion membrane which accounts for lower hydrogen and oxygen permeability of the former membranes. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 118
页数:9
相关论文
共 31 条
[1]   Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J].
Asano, N ;
Aoki, M ;
Suzuki, S ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1762-1769
[2]   Direct synthesis of fully sulfonated polyarylenethioether sulfones as proton-conducting polymers for fuel cells [J].
Bai, Zongwu ;
Dang, Thuy D. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (15) :1271-1277
[3]   Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application [J].
Chen, Yulin ;
Meng, Yuezhong ;
Wang, Shuanjin ;
Tian, Shuanghong ;
Chen, Yong ;
Hay, Allan S. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 280 (1-2) :433-441
[4]   Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications [J].
Chikashige, Y ;
Chikyu, Y ;
Miyatake, K ;
Watanabe, M .
MACROMOLECULES, 2005, 38 (16) :7121-7126
[5]   Ionomeric poly(phenylene) prepared by diels-alder polymerization: Synthesis and physical properties of a novel polyelectrolyte [J].
Fujimoto, CH ;
Hickner, MA ;
Cornelius, CJ ;
Loy, DA .
MACROMOLECULES, 2005, 38 (12) :5010-5016
[6]   Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution [J].
Gebel, G .
POLYMER, 2000, 41 (15) :5829-5838
[7]   THE MORPHOLOGY IN NAFION PERFLUORINATED MEMBRANE PRODUCTS, AS DETERMINED BY WIDE-ANGLE AND SMALL-ANGLE X-RAY STUDIES [J].
GIERKE, TD ;
MUNN, GE ;
WILSON, FC .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1981, 19 (11) :1687-1704
[8]   Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications [J].
Gil, M ;
Ji, XL ;
Li, XF ;
Na, H ;
Hampsey, JE ;
Lu, YF .
JOURNAL OF MEMBRANE SCIENCE, 2004, 234 (1-2) :75-81
[9]   Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J].
Guo, QH ;
Pintauro, PN ;
Tang, H ;
O'Connor, S .
JOURNAL OF MEMBRANE SCIENCE, 1999, 154 (02) :175-181
[10]   EPR investigation of HO. radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes [J].
Hübner, G ;
Roduner, E .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (02) :409-418