Inositol polyphosphates: a new frontier for regulating gene expression

被引:74
作者
Alcazar-Roman, Abel R. [1 ]
Wente, Susan R. [1 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Cell & Dev Biol, Nashville, TN 37232 USA
关键词
D O I
10.1007/s00412-007-0126-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Highly phosphorylated, soluble inositides are an emerging family of potential eukaryotic second messengers. The mechanisms for generating an outstanding diversity of mono- and pyrophosphorylated inositides have been recently elucidated and require a series of conserved lipases, kinases, and phosphatases. With several of the inositol kinases and the phospholipase C having access to the nucleus, roles for inositides in nuclear functions have been suggested. In support of this hypothesis, multiple studies have revealed the protein machines that are modulated by these inositides and found specific roles in nuclear physiology. In this paper, we review a novel paradigm for regulating gene expression at distinct steps by different inositide isomers. We discuss discoveries showing inositol polyphosphate regulation of gene expression at the level of transcription, chromatin remodeling, messenger ribonucleic acid (mRNA) editing, and mRNA export. Recent structural studies of inositol polyphosphate-binding proteins suggest the inositides modulate protein function as essential structural cofactors, triggers for allosteric or induced fit structural changes, and direct antagonistic competitors for other inositide ligands. We propose that the cell orchestrates the localized production of soluble inositol polyphosphates and inositol pyrophosphates to direct decisive and rapid signaling events. These insights also illustrate how extracellular stimuli might faithfully trigger the correct synchrony between gene expression steps and coordinate nuclear responses to changes in cellular environments.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 137 条
[1]   Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export [J].
Alcazar-Roman, Abel R. ;
Tran, Elizabeth J. ;
Guo, Shuangli ;
Wente, Susan R. .
NATURE CELL BIOLOGY, 2006, 8 (07) :711-U131
[2]   REMOVAL OF POSITIONED NUCLEOSOMES FROM THE YEAST PHO5 PROMOTER UPON PHO5 INDUCTION RELEASES ADDITIONAL UPSTREAM ACTIVATING DNA ELEMENTS [J].
ALMER, A ;
RUDOLPH, H ;
HINNEN, A ;
HORZ, W .
EMBO JOURNAL, 1986, 5 (10) :2689-2696
[3]  
[Anonymous], LIEBIGS ANN CHEM, DOI [10.1002/jlac.18500730303, DOI 10.1002/JLAC.18500730303]
[4]   Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase [J].
Audhya, A ;
Emr, SD .
EMBO JOURNAL, 2003, 22 (16) :4223-4236
[5]   Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae [J].
Auesukaree, C ;
Tochio, H ;
Shirakawa, M ;
Kaneko, Y ;
Harashima, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (26) :25127-25133
[6]   RNA editing by adenosine deaminases that act on RNA [J].
Bass, BL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :817-846
[7]   ASSESSING THE EXTENT OF RNA EDITING IN THE TMII REGIONS OF GLUR5 AND GLUR6 KAINATE RECEPTORS DURING RAT-BRAIN DEVELOPMENT [J].
BERNARD, A ;
KHRESTCHATISKY, M .
JOURNAL OF NEUROCHEMISTRY, 1994, 62 (05) :2057-2060
[8]   Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors [J].
Boronenkov, IV ;
Loijens, JC ;
Umeda, M ;
Anderson, RA .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3547-3560
[9]   Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand [J].
Bosanac, I ;
Alattia, JR ;
Mal, TK ;
Chan, J ;
Talarico, S ;
Tong, FK ;
Tong, KI ;
Yoshikawa, F ;
Furuichi, T ;
Iwai, M ;
Michikawa, T ;
Mikoshiba, K ;
Ikura, M .
NATURE, 2002, 420 (6916) :696-700
[10]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763