NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus

被引:74
作者
Zhu, Lei [1 ,2 ]
Polley, Nathan
Mathews, Gregory C. [3 ]
Delpire, Eric [2 ]
机构
[1] Vanderbilt Univ, Med Ctr, Grad Program Neurosci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Med Ctr, Dept Anesthesiol, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN 37232 USA
关键词
Na-K-2Cl cotransport; K-Cl cotransport; hippocampus; seizure; 4-aminopyridine; gamma aminobutyric acid;
D O I
10.1016/j.eplepsyres.2008.02.005
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
During postnatal development of the central nervous system (CNS), the response of GABA(A) receptors to its agonist undergoes maturation from depolarizing to hyperpolarizing. This switch in polarity is due to the developmental decrease of the intracellular Cl concentration in neurons. Here we show that absence of NKCC1 in P9-P13 CA3 pyramidal neurons, through genetic manipulation or through bumetanide inhibition, results in a significant increase in cell excitability. Furthermore, the pro-convulsant agent 4-aminopyridine induces seizure-like events in NKCC1-null mice but not in wild-type mice. Measurements of muscimol responses in the presence and absence of NKCC1 shows that the Na-K-2Cl cotransporter only marginally affects intracellular Cl- in P9-P13 CA3 principal neurons. However, large increases in intracellular Cl- are observed in CA3 pyramidal neurons following increased hyperexcitability, indicating that P9-P13 CA3 pyramidal neurons lack robust mechanisms to regulate intracellular Cl- during high synaptic activity. This increase in the Cl- concentration is network-driven and activity-dependent, as it is blocked by the non-NMDA glutamate receptor antagonist DNQX. We also show that expression of the outward K-Cl cotransporter, KCC2, prevents the development of hyperexcitability, as a reduction of KCC2 expression by half results in increased susceptibility to seizure under control and 4-AP conditions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 64 条
[1]   Kinetic properties of Cl- uptake mediated by Na+-dependent K+-2Cl- cotransport in immature rat neocortical neurons [J].
Achilles, Katharina ;
Okabe, Akihito ;
Ikeda, Masahiko ;
Shimizu-Okabe, Chigusa ;
Yamada, Junko ;
Fukuda, Atsuo ;
Luhmann, Heiko J. ;
Kilb, Werner .
JOURNAL OF NEUROSCIENCE, 2007, 27 (32) :8616-8627
[2]   INTRACELLULAR CHLORIDE REGULATION IN AMPHIBIAN DORSAL-ROOT GANGLION NEURONS STUDIED WITH ION-SELECTIVE MICROELECTRODES [J].
ALVAREZLEEFMANS, FJ ;
GAMINO, SM ;
GIRALDEZ, F ;
NOGUERON, I .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 406 :225-246
[3]   Differential expression patterns of chloride transporters, Na+-K+-2Cl--cotransporter and K+-Cl--cotransporter, in epilepsy-associated malformations of cortical development [J].
Aronica, E. ;
Boer, K. ;
Redeker, S. ;
Spliet, W. G. M. ;
Van Rijen, P. C. ;
Troost, D. ;
Gorter, J. A. .
NEUROSCIENCE, 2007, 145 (01) :185-196
[4]   ON THE SYNCHRONOUS ACTIVITY-INDUCED BY 4-AMINOPYRIDINE IN THE CA3 SUBFIELD OF JUVENILE RAT HIPPOCAMPUS [J].
AVOLI, M ;
PSARROPOULOU, C ;
TANCREDI, V ;
FUETA, Y .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (03) :1018-1029
[5]   PHARMACOLOGY AND ELECTROPHYSIOLOGY OF A SYNCHRONOUS GABA-MEDIATED POTENTIAL IN THE HUMAN NEOCORTEX [J].
AVOLI, M ;
MATTIA, D ;
SINISCALCHI, A ;
PERREAULT, P ;
TOMAIUOLO, F .
NEUROSCIENCE, 1994, 62 (03) :655-666
[6]   A GABAERGIC DEPOLARIZING POTENTIAL IN THE HIPPOCAMPUS DISCLOSED BY THE CONVULSANT 4-AMINOPYRIDINE [J].
AVOLI, M ;
PERREAULT, P .
BRAIN RESEARCH, 1987, 400 (01) :191-195
[7]  
Balakrishnan V, 2003, J NEUROSCI, V23, P4134
[8]   GABAergic input onto CA3 hippocampal interneurons remains shunting throughout development [J].
Banke, Tue G. ;
McBain, Chris J. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (45) :11720-11725
[9]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[10]   GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations [J].
Ben-Ari, Yehezkel ;
Gaiarsa, Jean-Luc ;
Tyzio, Roman ;
Khazipov, Rustem .
PHYSIOLOGICAL REVIEWS, 2007, 87 (04) :1215-1284