Protein and polymer immobilized La0.7Sr0.3MnO3 nanoparticles for possible biomedical applications

被引:53
作者
Bhayani, K. R.
Kale, S. N.
Arora, Sumit
Rajagopal, Rajashree
Mamgain, H.
Kaul-Ghanekar, R.
Kundaliya, Darshan C.
Kulkarni, S. D.
Pasricha, Renu
Dhole, S. D.
Ogale, S. B.
Paknikar, K. M.
机构
[1] Agharkar Res Inst, Pune 411004, Maharashtra, India
[2] Fergusson Coll, Comp Sci Unit, Pune 411004, Maharashtra, India
[3] Univ Maryland, Ctr Superconduct Res, College Pk, MD 20742 USA
[4] Natl Chem Lab, Ctr Mat Characterizat, Pune 411008, Maharashtra, India
[5] Univ Pune, Dept Phys, Pune 411007, Maharashtra, India
[6] Natl Chem Lab, Div Phys & Mat Chem, Pune 411008, Maharashtra, India
关键词
D O I
10.1088/0957-4484/18/34/345101
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
La0.7Sr0.3MnO3 (LSMO) is a mixed-valent room temperature ferromagnet with properties that are attractive for their applicability in biomedicine. We report, for the first time, immobilization of commonly used biocompatible molecules on LSMO nanoparticles, namely bovine serum albumin and dextran. The former was conjugated to LSMO using 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (CDI) as a coupling agent while the latter was used without any coupler. These bioconjugated nanoparticles exhibit several properties that suggest their applicability in the field of biomedicine, namely (a) no changes in the Curie temperature at similar to 360 K after conjugation with biomolecules, (b) rapid attainment of the desired temperature (48 degrees C) at low concentration (e. g. fluidized dextran-coated system at 80 mu g ml(-1)) upon exposure to 20 MHz radio-frequency, (c) extremely low cytotoxicity in skin carcinoma, human fibrosarcoma and neuroblastoma cell lines and (d) high stability of the LSMO system with negligible leaching of ionic manganese into the delivery medium, indicating their safety in possible human applications.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
Barbeau A, 1976, Adv Neurol, V14, P339
[2]   Iron nanoparticles as potential magnetic carriers [J].
Carpenter, EE .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 225 (1-2) :17-20
[3]   Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications [J].
Cheng, FY ;
Su, CH ;
Yang, YS ;
Yeh, CS ;
Tsai, CY ;
Wu, CL ;
Wu, MT ;
Shieh, DB .
BIOMATERIALS, 2005, 26 (07) :729-738
[4]   Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia [J].
Gneveckow, U ;
Jordan, A ;
Scholz, R ;
Brüss, V ;
Waldöfner, N ;
Ricke, J ;
Feussner, A ;
Hildebrandt, B ;
Rau, B ;
Wust, P .
MEDICAL PHYSICS, 2004, 31 (06) :1444-1451
[5]   Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J].
Gupta, AK ;
Gupta, M .
BIOMATERIALS, 2005, 26 (18) :3995-4021
[6]   Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer [J].
Johannsen, M ;
Thiesen, B ;
Gneveckow, U ;
Taymoorian, K ;
Waldöfner, N ;
Scholz, R ;
Deger, S ;
Jung, K ;
Loening, SA ;
Jordan, A .
PROSTATE, 2006, 66 (01) :97-104
[7]   The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma [J].
Jordan, A ;
Scholz, R ;
Maier-Hauff, K ;
van Landeghem, FKH ;
Waldoefner, N ;
Teichgraeber, U ;
Pinkernelle, J ;
Bruhn, H ;
Neumann, F ;
Thiesen, B ;
von Deimling, A ;
Felix, R .
JOURNAL OF NEURO-ONCOLOGY, 2006, 78 (01) :7-14
[8]  
KIM DK, 2005, J APPL PHYS, V97
[9]   Direct binding procedure of proteins and enzymes to fine magnetic particles [J].
Koneracká, M ;
Kopcansky, P ;
Timko, M ;
Ramchand, CN ;
de Sequeira, A ;
Trevan, M .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2002, 18 (1-3) :13-18
[10]  
Mosman T, 1993, J IMMUNOL METHODS, V65, P55