Orthonormal wavelets with simple closed-form expressions

被引:18
作者
Walter, GG [1 ]
Zhang, J
机构
[1] Univ Wisconsin, Dept Math, Milwaukee, WI 53201 USA
[2] Univ Wisconsin, Dept Elect Engn & Comp Sci, Milwaukee, WI 53201 USA
基金
美国国家科学基金会;
关键词
Bandpass filters - Digital communication systems - Intersymbol interference - Low pass filters - Polynomials - Wavelet transforms;
D O I
10.1109/78.705452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two classes of orthonormal wavelets that have simple closed form expressions are derived from pulses with the raised-cosine spectrum. These wavelets, which are bandlimited and polynomial-decaying in time, are found to be particular examples of the Lemarie-Meyer wavelets. The derivation reveals interesting connections between wavelet construction and intersymbol interference (ISI)-free signaling for digital communications.
引用
收藏
页码:2248 / 2251
页数:4
相关论文
共 10 条
[1]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[2]  
DAUBECHIES I, 1992, LECT WAVELETS
[3]  
JONES WW, 1994, THESIS U OHIO ATHENS
[4]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[5]  
MEYER Y, 1990, WAVELETS OPERATORS
[6]  
MEYER Y, 1993, WAVELETS ALGORIGHMS
[7]  
Proakis J.G., 1995, DIGITAL COMMUNICATIO
[8]  
Walter G. G., 1994, Applied and Computational Harmonic Analysis, V1, P344, DOI 10.1006/acha.1994.1020
[9]  
WALTER GG, 1996, ORTHONORMAL WAVELETS
[10]   A WAVELET-BASED KL-LIKE EXPANSION FOR WIDE-SENSE STATIONARY RANDOM-PROCESSES [J].
ZHANG, J ;
WALTER, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (07) :1737-1745