Co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge:: Effect of electrode materials

被引:56
作者
Li, Y
Xu, GH
Liu, CJ [1 ]
Eliasson, B
Xue, BZ
机构
[1] Tianjin Univ, State Key Lab Chem Technol C1, Tianjin 300072, Peoples R China
[2] ABB Corp Res Ltd, Energy & Global Change, CH-5405 Baden, Switzerland
关键词
D O I
10.1021/ef0002445
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effect of electrode materials on the co-generation of syngas and higher hydrocarbons from CO2 and CH4 using dielectric-barrier discharge has been investigated. The electrode materials tested here include aluminum, copper, steel, and titanium. For the feed of methane in the absence of CO2, the order of activity of methane, conversion from high to low was Ti approximate to Al > Fe > Cu, while the order of the activity of CO2 conversion was Al > Cu > Ti > Fe for the case of CO2 feed without methane. Regarding the co-feed of methane and CO2, the titanium electrode shows the best activity for the conversions, while the other three materials show a similar performance for the conversions. The effect of dilution gas, helium, on the:conversions has also been discussed.
引用
收藏
页码:299 / 302
页数:4
相关论文
共 20 条
[1]   CO2 reforming of CH4 [J].
Bradford, MCJ ;
Vannice, MA .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01) :1-42
[2]  
Brook SL, 1998, J CATAL, V180, P225
[3]  
CHANG JS, 1987, P INT S HIGH PRESS L, V2, P45
[4]   Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites [J].
Eliasson, B ;
Liu, CJ ;
Kogelschatz, U .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (05) :1221-1227
[5]   Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst [J].
Eliasson, B ;
Kogelschatz, U ;
Xue, BZ ;
Zhou, LM .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (08) :3350-3357
[6]   The CO2 reforming of natural gas in a silent discharge reactor [J].
Gesser, HD ;
Hunter, NR ;
Probawono, D .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 1998, 18 (02) :241-245
[7]   CO2 reforming of CH4 by atmospheric pressure ac discharge plasmas [J].
Huang, AM ;
Xia, GG ;
Wang, JY ;
Suib, SL ;
Hayashi, Y ;
Matsumoto, H .
JOURNAL OF CATALYSIS, 2000, 189 (02) :349-359
[8]   THE EFFECT OF RESIDENCE TIME ON THE CO2 REDUCTION FROM COMBUSTION FLUE GASSES BY AN AC FERROELECTRIC PACKED-BED REACTOR [J].
JOGAN, K ;
MIZUNO, A ;
YAMAMOTO, T ;
CHANG, JS .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1993, 29 (05) :876-881
[9]  
Krylov O.V., 1995, RUSS CHEM REV+, V64, P877, DOI [10.1070/RC1995v064n09ABEH000182, DOI 10.1070/RC1995V064N09ABEH000182]
[10]   Non-thermal plasma approaches in CO2 utilization [J].
Liu, CJ ;
Xu, GH ;
Wang, TM .
FUEL PROCESSING TECHNOLOGY, 1999, 58 (2-3) :119-134