A family of rectangular mixed elements with a continuous flux for second order elliptic problems

被引:16
作者
Arbogast, T
Wheeler, MF
机构
[1] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
[3] Univ Texas, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
[4] Univ Texas, Dept Petr & Geosyst Engn, Austin, TX 78712 USA
关键词
mixed finite element method; continuous flux; elliptic equation; error estimates;
D O I
10.1137/S0036142903435247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a family of mixed finite element spaces for second order elliptic equations in two and three space dimensions. Our spaces approximate the vector flux by a continuous function. Our spaces generalize certain spaces used for approximation of Stokes problems. The finite element method incorporates projections of the Dirichlet data and certain low order terms. The method is locally conservative on the average. Suboptimal convergence is proven and demonstrated numerically. The key result is to construct a flux pi-projection operator that is bounded in the Sobolev space H-1, preserves a projection of the divergence, and approximates optimally. Moreover, the corresponding Raviart-Thomas flux preserving pi-projection operator is an L-2-projection when restricted to this family of spaces.
引用
收藏
页码:1914 / 1931
页数:18
相关论文
共 33 条
[1]   A CHARACTERISTICS-MIXED FINITE-ELEMENT METHOD FOR ADVECTION-DOMINATED TRANSPORT PROBLEMS [J].
ARBOGAST, T ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) :404-424
[2]  
ARBOGAST T, 2004, COMPUTATIONAL METHOD, V15
[3]  
ARBOGAST T, UNPUB COMPUTATIONAL
[4]  
ARNOLD D., 1988, ANN SCUOLA NORM SUP, V15, P169
[5]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[6]  
Bear J., 1988, DYNAMICS FLUIDS PORO
[7]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[8]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[9]  
Brenner S. C., 2007, Texts Appl. Math., V15
[10]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235