A role for the phosphorylation of hRad9 in checkpoint signaling

被引:76
作者
St Onge, RP
Besley, BDA
Pelley, JL
Davey, S [1 ]
机构
[1] Queens Univ, Canc Res Inst, Div Canc Biol & Genet, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Pathol, Kingston, ON K7L 3N6, Canada
[3] Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada
[4] Queens Univ, Dept Oncol, Kingston, ON K7L 3N6, Canada
关键词
D O I
10.1074/jbc.M303134200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The integrity of the human genome is preserved by signal transduction pathways called checkpoints, which delay progression through the cell cycle when DNA damage is present. Three checkpoint proteins, hRad9, hRad1, and hHus1, form a proliferating cell nuclear antigen-like, heterotrimeric complex that has been proposed to function in the initial detection of DNA structural abnormalities. hRad9 is highly modified by phosphorylation, in a constitutive manner and in response to both DNA damage and cell cycle position. Here we present evidence that Thr(292) of hRad9 is subject to Cdc2-dependent phosphorylation in mitosis. Furthermore, our data are also consistent with four other hRad9 phosphorylation sites (Ser(277), Ser(328), Ser(336), and Thr(355)) being regulated in part by Cdc2. We also identify Ser(387) as a novel site of hRad9 constitutive phosphorylation and show that phosphorylation at Ser387 is a prerequisite for one form of DNA damage-induced hyperphosphorylation of hRad9. Characterization of nonphosphorylatable mutants has revealed that hRad9 phosphorylation plays a critical role in checkpoint signaling. Overexpression of these mutants blocks the interaction between hRad9 and the DNA damage-responsive protein TopBP1 and impairs the cellular response to DNA damage during S phase.
引用
收藏
页码:26620 / 26628
页数:9
相关论文
共 42 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   DNA-REPAIR MUTANTS DEFINING G2 CHECKPOINT PATHWAYS IN SCHIZOSACCHAROMYCES-POMBE [J].
ALKHODAIRY, F ;
CARR, AM .
EMBO JOURNAL, 1992, 11 (04) :1343-1350
[3]   IDENTIFICATION AND CHARACTERIZATION OF NEW ELEMENTS INVOLVED IN CHECKPOINT AND FEEDBACK CONTROLS IN FISSION YEAST [J].
ALKHODAIRY, F ;
FOTOU, E ;
SHELDRICK, KS ;
GRIFFITHS, DJF ;
LEHMANN, AR ;
CARR, AM .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (02) :147-160
[4]   DPB11, WHICH INTERACTS WITH DNA-POLYMERASE II(EPSILON) IN SACCHAROMYCES-CEREVISIAE, HAS A DUAL ROLE IN S-PHASE PROGRESSION AND AT A CELL-CYCLE CHECKPOINT [J].
ARAKI, H ;
LEEM, SH ;
PHONGDARA, A ;
SUGINO, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11791-11795
[5]   ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses [J].
Bao, SD ;
Tibbetts, RS ;
Brumbaugh, KM ;
Fang, YN ;
Richardson, DA ;
Ali, A ;
Chen, SM ;
Abraham, RT ;
Wang, XF .
NATURE, 2001, 411 (6840) :969-974
[6]   Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro [J].
Bermudez, VP ;
Lindsey-Boltz, LA ;
Cesare, AJ ;
Maniwa, Y ;
Griffith, JD ;
Hurwitz, J ;
Sancar, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1633-1638
[7]   Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage [J].
Burtelow, MA ;
Kaufmann, SH ;
Karnitz, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26343-26348
[8]   Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex [J].
Burtelow, MA ;
Roos-Mattjus, PMK ;
Rauen, M ;
Babendure, JR ;
Karnitz, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :25903-25909
[9]   ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation [J].
Chen, MJ ;
Lin, YT ;
Lieberman, HB ;
Chen, G ;
Lee, EYHP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :16580-16586
[10]   Inhibition of cyclin-dependent kinases by purine analogues - Crystal structure of human cdk2 complexed with roscovitine [J].
DeAzevedo, WF ;
Leclerc, S ;
Meijer, L ;
Havlicek, L ;
Strnad, M ;
Kim, SH .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 243 (1-2) :518-526