THE USE OF SATELLITE SAR IMAGERY TO CROP CLASSIFICATION IN UKRAINE WITHIN JECAM PROJECT

被引:32
作者
Kussul, Nataliia [1 ]
Skakun, Sergii [1 ]
Shelestov, Andrii [1 ]
Kussul, Olga
机构
[1] NAS Ukraine, Space Res Inst, Kiev, Ukraine
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
SAR; crop; classification; JECAM; Ukraine; EFFICIENCY ASSESSMENT; BIOPHYSICAL MODELS; EARTH OBSERVATION;
D O I
10.1109/IGARSS.2014.6946721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we focus on the application of satellite synthetic-aperture radar (SAR) images for discriminating summer crops in Ukraine within the JECAM project. Both optical (EO-1/ALI) and SAR (RADARSAT-2) images are used in order to assess impact adding SAR images for classification purposes. Three different classifiers, in particular neural networks, support vector machine and decision trees, are applied with neural networks giving the best overall accuracy. It is found that major impact of using SAR images is for sunflower and sugar beet classes while there was no gain for other crops (maize and soybeans).
引用
收藏
页码:1497 / 1500
页数:4
相关论文
共 25 条
[1]  
Bakan G.M., 1996, PROBLEMY UPRAVLENIYA, P77
[2]   Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project [J].
Becker-Reshef, Inbal ;
Justice, Chris ;
Sullivan, Mark ;
Vermote, Eric ;
Tucker, Compton ;
Anyamba, Assaf ;
Small, Jen ;
Pak, Ed ;
Masuoka, Ed ;
Schmaltz, Jeff ;
Hansen, Matthew ;
Pittman, Kyle ;
Birkett, Charon ;
Williams, Derrick ;
Reynolds, Curt ;
Doorn, Bradley .
REMOTE SENSING, 2010, 2 (06) :1589-1609
[3]   Efficiency of crop identification based on optical and SAR image time series [J].
Blaes, X ;
Vanhalle, L ;
Defourny, P .
REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) :352-365
[4]   A review of target decomposition theorems in radar polarimetry [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (02) :498-518
[5]  
FAS, 2009, PROD SUPPL DISTR ONL
[6]   Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction [J].
Flanders, D ;
Hall-Beyer, M ;
Pereverzoff, J .
CANADIAN JOURNAL OF REMOTE SENSING, 2003, 29 (04) :441-452
[7]   Efficiency assessment of using satellite data for crop area estimation in Ukraine [J].
Gallego, Francisco Javier ;
Kussul, Nataliia ;
Skakun, Sergh ;
Kravchenko, Oleksii ;
Shelestov, Andrii ;
Kussul, Olga .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 29 :22-30
[8]   Efficiency Assessment of Different Approaches to Crop Classification Based on Satellite and Ground Observations [J].
Gallego, J. ;
Kravchenko, A. N. ;
Kussul, N. N. ;
Skakun, S. V. ;
Shelestov, A. Yu. ;
Grypych, Yu. A. .
JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2012, 44 (05) :67-80
[9]  
GEOSS, 2009, BEST PRACT CROP AR E
[10]   Unsupervised Full-Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas [J].
Hoekman, Dirk H. ;
Vissers, Martin A. M. ;
Tran, Thanh N. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (02) :402-411