An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms

被引:142
作者
Valdez, Fevrier [1 ]
Melin, Patricia [1 ]
Castillo, Oscar [1 ]
机构
[1] Tijuana Inst Technol, Comp Sci Grad Div, Tijuana 22500, BC, Mexico
关键词
Particle Swarm Optimization; Genetic Algorithms; Fuzzy logic; BASKING SHARKS; BEHAVIOR;
D O I
10.1016/j.asoc.2010.10.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe in this paper a new hybrid approach for optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using fuzzy logic to integrate the results of both methods and for parameters tuning. The new optimization method combines the advantages of PSO and GA to give us an improved FPSO + FGA hybrid approach. Fuzzy logic is used to combine the results of the PSO and GA in the best way possible. The new hybrid FPSO + FGA approach is compared with the PSO and GA methods with a set of benchmark mathematical functions. The improved hybrid FPSO + FGA method is shown to outperform both individual optimization methods. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2625 / 2632
页数:8
相关论文
共 26 条
[1]  
[Anonymous], THESIS MIT
[2]  
[Anonymous], 1975, Ann Arbor
[3]  
[Anonymous], 1999, Genetic Algorithms: Concepts and Designs
[4]  
Back T., 1997, HDB EVOLUTIONARY COM
[5]  
Bayazit OB, 2002, 10TH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS, P104, DOI 10.1109/PCCGA.2002.1167844
[6]  
Eberhart R., 1995, MHS 95, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[7]  
EMMECHE C, 1994, GARDEN MACHINE EMERG, P114
[8]   Jobshop scheduling with imprecise durations: A fuzzy approach [J].
Fortemps, P .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (04) :557-569
[9]  
Goldberg DE., 1988, GENETIC ALGORITHMS
[10]   Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella [J].
Janson, CH .
ANIMAL BEHAVIOUR, 1998, 55 :1229-1243