Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording

被引:464
作者
Fan, Xing [1 ,2 ]
Chen, Jun [1 ]
Yang, Jin [1 ]
Bai, Peng [1 ]
Li, Zhaoling [1 ]
Wang, Zhong Lin [3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 400044, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
paper-thin; rollable; triboelectric nanogenerator; acoustic energy harvesting; self-powered sound recording; WATER-WAVE ENERGY; ACTIVE SENSORS; SHOE INSOLE; VIBRATION; GENERATION; EARDRUM; MOTION;
D O I
10.1021/acsnano.5b00618
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 125 mu m thickness, rollable, paper-based triboelectric nanogenerator (TENG) has been developed for harvesting sound wave energy, which is capable of delivering a maximum power density of 121 mW/m(2) and 968 W/m(3) under a sound pressure of 117 dB(SPL). The TENG is designed in the contact-separation mode using membranes that have rationally designed holes at one side. The TENG can be implemented onto a commercial cell phone for acoustic energy harvesting from human talking; the electricity generated can be used to charge a capacitor at a rate of 0.144 V/s. Additionally, owing to the superior advantages of a broad working bandwidth, thin structure, and flexibility, a self-powered microphone for sound recording with rolled structure is demonstrated for all-sound recording without an angular dependence. The concept and design presented in this work can be extensively applied to a variety of other circumstances for either energy-harvesting or sensing purposes, for example, wearable and flexible electronics, military surveillance, jet engine noise reduction, low-cost implantable human ear, and wireless technology applications.
引用
收藏
页码:4236 / 4243
页数:8
相关论文
共 40 条
[1]   Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring [J].
Bai, Peng ;
Zhu, Guang ;
Jing, Qingshen ;
Yang, Jin ;
Chen, Jun ;
Su, Yuanjie ;
Ma, Jusheng ;
Zhang, Gong ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) :5807-5813
[2]   Optimal shaping of acoustic resonators for the generation of high-amplitude standing waves [J].
Cervenka, Milan ;
Soltes, Martin ;
Bednarik, Michal .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (03) :1003-1012
[3]   Sound-Driven Piezoelectric Nanowire-Based Nanogenerators [J].
Cha, Seung Nam ;
Seo, Ju-Seok ;
Kim, Seong Min ;
Kim, Hyun Jin ;
Park, Young Jun ;
Kim, Sang-Woo ;
Kim, Jong Min .
ADVANCED MATERIALS, 2010, 22 (42) :4726-+
[4]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[5]   Personalized Keystroke Dynamics for Self-Powered Human-Machine Interfacing [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Jin ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Weiqing ;
Qi, Xuewei ;
Su, Yuanjie ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (01) :105-116
[6]   Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor [J].
Chen, Jun ;
Zhu, Guang ;
Yang, Weiqing ;
Jing, Qingshen ;
Bai, Peng ;
Yang, Ya ;
Hou, Te-Chien ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2013, 25 (42) :6094-6099
[7]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[8]   Modeling the eardrum as a string with distributed force [J].
Goll, Erich ;
Dalhoff, Ernst .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 130 (03) :1452-1462
[9]   Acoustic absorption behaviour of an open-celled aluminium foam [J].
Han, FS ;
Seiffert, G ;
Zhao, YY ;
Gibbs, B .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (03) :294-302
[10]   Fast mass transport through sub-2-nanometer carbon nanotubes [J].
Holt, JK ;
Park, HG ;
Wang, YM ;
Stadermann, M ;
Artyukhin, AB ;
Grigoropoulos, CP ;
Noy, A ;
Bakajin, O .
SCIENCE, 2006, 312 (5776) :1034-1037