Topological charge of lattice abelian gauge theory

被引:18
作者
Fujiwara, T [1 ]
Suzuki, H
Wu, K
机构
[1] Ibaraki Univ, Dept Math Sci, Mito, Ibaraki 3108512, Japan
[2] Abdus Salam ICTP, High Energy Grp, I-34014 Trieste, Italy
[3] Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China
来源
PROGRESS OF THEORETICAL PHYSICS | 2001年 / 105卷 / 05期
关键词
D O I
10.1143/PTP.105.789
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected when exceptional gauge field configurations are removed. It is possible to define a U(1)-bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of the Chern character obtained using a cohomological technique based on noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1)-bundle.
引用
收藏
页码:789 / 807
页数:19
相关论文
共 21 条
[1]  
ADAMS DH, HEPLAT0001014
[2]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[3]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[4]   HIGGS AS GAUGE-FIELDS ON DISCRETE-GROUPS AND STANDARD MODELS FOR ELECTROWEAK AND ELECTROWEAK-STRONG INTERACTIONS [J].
DING, HG ;
GUO, HY ;
LI, JM ;
WU, K .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (03) :521-532
[5]   Axial anomaly in lattice abelian gauge theory in arbitrary dimensions [J].
Fujiwara, T ;
Suzuki, H ;
Wu, K .
PHYSICS LETTERS B, 1999, 463 (01) :63-68
[6]   A REMNANT OF CHIRAL SYMMETRY ON THE LATTICE [J].
GINSPARG, PH ;
WILSON, KG .
PHYSICAL REVIEW D, 1982, 25 (10) :2649-2657
[7]   TOPOLOGY OF SU(3) LATTICE GAUGE-THEORY - 1ST CALCULATION OF THE TOPOLOGICAL SUSCEPTIBILITY [J].
GOCKELER, M ;
KRONFELD, AS ;
LAURSEN, ML ;
SCHIERHOLZ, G ;
WIESE, UJ .
NUCLEAR PHYSICS B, 1987, 292 (02) :349-362
[8]   Lattice QCD without tuning, mixing and current renormalization [J].
Hasenfratz, P .
NUCLEAR PHYSICS B, 1998, 525 (1-2) :401-409
[9]   Prospects for perfect actions [J].
Hasenfratz, P .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 :53-58
[10]   The index theorem in QCD with a finite cut-off [J].
Hasenfratz, P ;
Laliena, V ;
Niedermayer, F .
PHYSICS LETTERS B, 1998, 427 (1-2) :125-131