A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone

被引:46
作者
Delle Monache, Luca [1 ]
Wilczak, James [2 ]
McKeen, Stuart [3 ,4 ]
Grell, Georg [3 ,5 ]
Pagowski, Mariusz [5 ,6 ]
Peckham, Steven [3 ,5 ]
Stull, Roland [1 ]
Mchenry, John [7 ]
McQueen, Jeffrey [8 ]
机构
[1] Univ British Columbia, Earth & Ocean Sci Dept, Atmospher Sci Programme, Vancouver, BC V5Z 1M9, Canada
[2] Natl Ocean & Atmsphere Adm, Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] Natl Ocean & Atmsphere Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA
[5] Natl Ocean & Atmsphere Adm, Earth Syst Res Lab, Global Syst Div, Boulder, CO USA
[6] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA
[7] N Carolina State Univ, Baron Adv Meteorol Syst, Raleigh, NC 27695 USA
[8] Natl Ocean & Atmsphere Adm, Natl Ctr Environm Predict, Natl Weather Serv, Camp Springs, MD USA
来源
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY | 2008年 / 60卷 / 02期
关键词
D O I
10.1111/j.1600-0889.2007.00332.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Kalman filtering (KF) is used to estimate systematic errors in surface ozone forecasts. The KF updates its estimate of future ozone-concentration bias using past forecasts and observations. The optimum filter parameter is estimated via sensitivity analysis. KF performance is tested for deterministic, ensemble-averaged and probabilistic forecasts. Eight simulations were run for 56 d during summer 2004 over northeastern USA and southern Canada, with 358 ozone surface stations. KF improves forecasts of ozone-concentration magnitude (measured by root mean square error) and the ability to predict rare events (measured by the critical success index), for deterministic and ensemble-averaged forecasts. It improves the 24-h maximum ozone-concentration prediction (measured by the unpaired peak prediction accuracy), and improves the linear dependency and timing of forecasted and observed ozone concentration peaks (measured by a lead/lag correlation). KF also improves the predictive skill of probabilistic forecasts of concentration greater than thresholds of 10-50 ppbv, but degrades it for thresholds of 70-90 ppbv. KF reduces probabilistic forecast bias. The combination of KF and ensemble averaging presents a significant improvement for real-time ozone forecasting because KF reduces systematic errors while ensemble-averaging reduces random errors. When combined, they produce the best overall ozone forecast.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 1994, DESCRIPTION 5 GENERA
[2]   EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY - INTRODUCTION [J].
ATKINSON, R ;
BAULCH, DL ;
COX, RA ;
HAMPSON, RF ;
KERR, JA ;
TROE, J .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1992, 26 (07) :1187-1230
[3]   The Regional Particulate Matter Model .1. Model description and preliminary results [J].
Binkowski, FS ;
Shankar, U .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D12) :26191-26209
[4]  
Bozic SM., 1994, DIGITAL KALMAN FILTE, V2
[5]   Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system [J].
Byun, Daewon ;
Schere, Kenneth L. .
APPLIED MECHANICS REVIEWS, 2006, 59 (1-6) :51-77
[6]   Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment [J].
Carmichael, GR ;
Tang, Y ;
Kurata, G ;
Uno, I ;
Streets, D ;
Woo, JH ;
Huang, H ;
Yienger, J ;
Lefer, B ;
Shetter, R ;
Blake, D ;
Atlas, E ;
Fried, A ;
Apel, E ;
Eisele, F ;
Cantrell, C ;
Avery, M ;
Barrick, J ;
Sachse, G ;
Brune, W ;
Sandholm, S ;
Kondo, Y ;
Singh, H ;
Talbot, R ;
Bandy, A ;
Thorton, D ;
Clarke, A ;
Heikes, B .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D21)
[7]  
CARTER W, 2000, SAPRC99
[8]  
Cote J, 1998, MON WEATHER REV, V126, P1397, DOI 10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO
[9]  
2
[10]  
Cote J, 1998, MON WEATHER REV, V126, P1373, DOI 10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO