Supertrees disentangle the chimerical origin of eukaryotic Genomes

被引:129
作者
Pisani, Davide [1 ]
Cotton, James A. [1 ]
McInerney, James O. [1 ]
机构
[1] Natl Univ Ireland, Dept Biol, Maynooth, Kildare, Ireland
关键词
supertrees; phylogenomics; tree of life; network of life; eukaryote origins;
D O I
10.1093/molbev/msm095
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotes are traditionally considered to be one of the three natural divisions of the tree of life and the sister group of the Archaebacteria. However, eukaryotic genomes are replete with genes of eubacterial ancestry, and more than 20 mutually incompatible hypotheses have been proposed to account for eukaryote origins. Here we test the predictions of these hypotheses using a novel supertree-based phylogenetic signal-stripping method, and recover supertrees of life based on phylogenies for up to 5,741 single gene families distributed across 185 genomes. Using our signal-stripping method, we show that there are three distinct phylogenetic signals in eukaryotic genomes. In order of strength, these link eukaryotes with the Cyanobacteria, the Proteobacteria, and the Thermoplasmatales, an archaebacterial (euryarchaeotes) group. These signals correspond to distinct symbiotic partners involved in eukaryote evolution: plastids, mitochondria, and the elusive host lineage. According to our whole-genome data, eukaryotes are hardly the sister group of the Archaebacteria, because up to 83% of eukaryotic genes with a prokaryotic homolog have eubacterial, not archaebacterial, origins. The results reject all but two of the current hypotheses for the origin of eukaryotes: those assuming a sulfur-dependent or hydrogen-dependent syntrophy for the origin of mitochondria.
引用
收藏
页码:1752 / 1760
页数:9
相关论文
共 53 条
[1]  
[Anonymous], SYSTEMATIC ZOOLOGY
[3]   Highways of gene sharing in prokaryotes [J].
Beiko, RG ;
Harlow, TJ ;
Ragan, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14332-14337
[4]   Archaea sister group of bacteria? Indications from tree reconstruction artifacts in ancient phylogenies [J].
Brinkmann, H ;
Philippe, H .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (06) :817-825
[5]   Supertree bootstrapping methods for assessing phylogenetic variation among genes in genome-scale data sets [J].
Burleigh, J. Gordon ;
Driskell, Amy C. ;
Sanderson, Michael J. .
SYSTEMATIC BIOLOGY, 2006, 55 (03) :426-440
[6]   Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J].
Castresana, J .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) :540-552
[7]   The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa [J].
Cavalier-Smith, T .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2002, 52 :297-354
[8]   Computing prokaryotic gene ubiquity: Rescuing the core from extinction [J].
Charlebois, RL ;
Doolittle, WF .
GENOME RESEARCH, 2004, 14 (12) :2469-2477
[9]   Toward automatic reconstruction of a highly resolved tree of life [J].
Ciccarelli, FD ;
Doerks, T ;
von Mering, C ;
Creevey, CJ ;
Snel, B ;
Bork, P .
SCIENCE, 2006, 311 (5765) :1283-1287
[10]   Clann: investigating phylogenetic information through supertree analyses [J].
Creevey, CJ ;
McInerney, JO .
BIOINFORMATICS, 2005, 21 (03) :390-392