Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems

被引:161
作者
Gao, Y [1 ]
Er, MJ [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Instrumentat & Syst Engn Lab, Singapore 639798, Singapore
关键词
fuzzy logic; Lyapunov theorem; multiple-input-multiple-output; (MIMO) nonlinear systems; neural networks; robust adaptive control;
D O I
10.1109/TFUZZ.2003.814833
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a robust adaptive fuzzy neural controller (AFNC) suitable for identification and control of a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems. The proposed controller has the following salient features: 1) self-organizing fuzzy neural structure, i.e., fuzzy control rules can be generated or deleted automatically; 2) online learning ability of uncertain MIMO nonlinear systems; 3) fast learning speed; 4) fast convergence of tracking errors; 5) adaptive control, where structure and parameters of the AFNC can be self-adaptive in the presence of disturbances to maintain high control performance; 6) robust control, where global stability of the system is established using the Lyapunov approach. Simulation studies on an inverted pendulum and a two-link robot manipulator show that the performance of the proposed controller is superior.
引用
收藏
页码:462 / 477
页数:16
相关论文
共 21 条
[1]   LEARNING AND TUNING FUZZY-LOGIC CONTROLLERS THROUGH REINFORCEMENTS [J].
BERENJI, HR ;
KHEDKAR, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :724-740
[2]  
Chang YC, 2001, IEEE T FUZZY SYST, V9, P278, DOI 10.1109/91.919249
[3]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[4]   Hybrid adaptive fuzzy controllers of robot manipulators with bounds estimation [J].
Er, MJ ;
Chin, SH .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) :1151-1160
[5]   Robust adaptive control of robot manipulators using generalized fuzzy neural networks [J].
Er, MJ ;
Gao, Y .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (03) :620-628
[6]   A new stable tracking control scheme for robotic manipulators [J].
Feng, G .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (03) :510-516
[7]   Adaptive control of robot manipulators using fuzzy neural networks [J].
Gao, Y ;
Er, MJ ;
Yang, S .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (06) :1274-1278
[8]   Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators [J].
Han, H ;
Su, CY ;
Stepanenko, Y .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (02) :315-323
[9]   NEURAL NETWORKS FOR CONTROL-SYSTEMS - A SURVEY [J].
HUNT, KJ ;
SBARBARO, D ;
ZBIKOWSKI, R ;
GAWTHROP, PJ .
AUTOMATICA, 1992, 28 (06) :1083-1112
[10]   On generating FC3 fuzzy rule systems from data using evolution strategies [J].
Jin, YC ;
von Seelen, W ;
Sendhoff, B .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06) :829-845