Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment

被引:110
作者
Kiorboe, T
Ploug, H
Thygesen, UH
机构
[1] Danish Inst Fisheries & Marine Res, DK-2920 Charlottenlund, Denmark
[2] Univ Copenhagen, Marine Biol Lab, DK-3000 Helsingor, Denmark
关键词
marine snow; mass transport; bulk Sherwood number; local Sherwood number; aggregate respiration rate;
D O I
10.3354/meps211001
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Marine snow aggregates are sites of elevated biological activity. This activity depends on the exchange of solutes (O-2, CO2, mineral nutrients, dissolved organic material, etc.) between the aggregate and the environment and causes heterogeneity in the distribution of dissolved substances in the ambient water. We described the fluid flow and solute distribution around a sinking aggregate by solving the Navier-Stokes' equations and the advection-diffusion equations numerically. The model is valid for Reynolds numbers characteristic of marine snow, up to Re = 20. The model demonstrates the importance of a correct flow environment when making biological rate-measurements on aggregates (e.g., oxygen consumption/production, growth rates of bacteria and phytoplankton) because both solute fluxes and internal solute concentrations depend strongly on the flow environment. Observations of flow and oxygen-concentration fields in the vicinity of both artificial and natural oxygen-consuming aggregates that are suspended in a flow compare well with model predictions, thus suggesting that our set-up is suitable for making biological rate measurements. The sinking aggregate leaves a long slender plume in its wake, where solute concentration is either elevated (leaking substances) or depressed (consumed substances) relative to ambient concentration. Such plumes may impact the nutrition of osmotrophs. For example, based on published solubilization rates of aggregates we describe the amino acid plume behind a sinking aggregate (0.1 to 1.0 cm radius). The volume of the plume with amino acid concentrations high enough to significantly affect bacterial uptake rates is ca 100x the volume of the aggregate itself. Thus, sinking aggregates may create significant microniches also for free-living bacteria.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 59 条
[1]  
Acheson D. J., 1990, ELEMENTARY FLUID DYN
[2]   ASYMPTOTIC EXPANSIONS FOR LAMINAR FORCED-CONVECTION HEAT AND MASS TRANSFER [J].
ACRIVOS, A ;
GODDARD, JD .
JOURNAL OF FLUID MECHANICS, 1965, 23 :273-&
[3]   HEAT AND MASS TRANSFER FROM SINGLE SPHERES IN STOKES FLOW [J].
ACRIVOS, A ;
TAYLOR, TD .
PHYSICS OF FLUIDS, 1962, 5 (04) :387-394
[4]   The carbon, nitrogen and mass content of marine snow as a function of aggregate size [J].
Alldredge, A .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1998, 45 (4-5) :529-541
[5]   INSITU SETTLING BEHAVIOR OF MARINE SNOW [J].
ALLDREDGE, AL ;
GOTSCHALK, C .
LIMNOLOGY AND OCEANOGRAPHY, 1988, 33 (03) :339-351
[6]   DISCARDED APPENDICULARIAN HOUSES AS SOURCES OF FOOD, SURFACE HABITATS AND PARTICULATE ORGANIC-MATTER IN PLANKTONIC ENVIRONMENTS [J].
ALLDREDGE, AL .
LIMNOLOGY AND OCEANOGRAPHY, 1976, 21 (01) :14-23
[7]   DIRECT OBSERVATIONS OF THE MASS FLOCCULATION OF DIATOM BLOOMS - CHARACTERISTICS, SETTLING VELOCITIES AND FORMATION OF DIATOM AGGREGATES [J].
ALLDREDGE, AL ;
GOTSCHALK, CC .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1989, 36 (02) :159-&
[8]   CHARACTERISTICS, DYNAMICS AND SIGNIFICANCE OF MARINE SNOW [J].
ALLDREDGE, AL ;
SILVER, MW .
PROGRESS IN OCEANOGRAPHY, 1988, 20 (01) :41-82
[9]  
Atema J., 1988, P29
[10]   NEW VIEWS ON THE DEGRADATION AND DISPOSITION OF ORGANIC PARTICLES AS COLLECTED BY SEDIMENT TRAPS IN THE OPEN SEA [J].
BANSE, K .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1990, 37 (07) :1177-1195